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Abstract

In this paper, we investigateG-commerce —
computationaleconomiesfor controlling resource
allocationin ComputationalGrid settings.Wede-
fine hypotheticalresource consumers (represent-
ing users and Grid-aware applications)and re-
source producers (representingresource owners
who“sell” their resourcesto theGrid). We then
measure theefficiencyof resourceallocation un-
der two differentmarket conditions:commodities
markets and auctions. We compare both mar-
ket strategies in termsof price stability, market
equilibrium, consumerefficiency, and producer
efficiency. Our resultsindicatethat commodities
marketsare a betterchoice for controlling Grid
resourcesthan previouslydefinedauctionstrate-
gies.

1 Intr oduction

With theproliferationof theInternetcomesthe
possibilityof aggregatingvastcollectionsof com-�
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putersinto large-scalecomputationalplatforms.
A new computingparadigmknown asthe Com-
putationalGrid [17, 3] articulatesa vision of dis-
tributedcomputingin which applications“plug”
into a “power grid” of computationalresources
when they execute, dynamically drawing what
they needfrom the global supply. While a great
dealof researchconcerningthe softwaremecha-
nismsthat will be necessaryto bring Computa-
tional Grids to fruition is underway [3, 16, 20, 8,
4, 24, 21, 1, 34], little work hasfocusedon the
resourcecontrol policies that are likely to suc-
ceed. In particular, almostall Grid resourceal-
locationandschedulingresearchespousesoneof
two paradigms:centralizedomnipotentresource
control [18, 20, 28, 29] or localizedapplication
control [9, 4, 2, 19]. The first is certainlynot a
scalablesolutionandthe secondcanleadto un-
stableresourceassignmentsas“Grid-aware” ap-
plicationsadaptto competefor resources.

In this paper, we investigateG-commerce —
theproblemof dynamicresourceallocationonthe
Grid in termsof computationalmarketeconomies
in whichapplicationsmustbuy theresourcesthey
usefrom resourcesuppliersusinganagreed-upon
currency. Framingthe resourceallocationprob-



lem in economicterms is attractive for several
reasons.First, resourceusageis not free. While
burgeoningGrid systemsarewilling to make re-
sourcesreadily available to early developersas
a way of cultivating a usercommunity, resource
costeventuallymustbe consideredif the Grid is
to becomepervasive. Second,the dynamicsof
Grid performanceresponseare, as of yet, diffi-
cult to model. Application schedulerscanmake
resourceacquisitiondecisionsat machinespeeds
in responseto theperceivedeffectsof contention.
As resourceload fluctuates,applicationscanad-
just their resourceusage,formingafeedbackcon-
trol loop with a potentially non-linearresponse.
By formulating Grid resourceusagein market
terms,we areableto draw upona large body of
analytical researchfrom the field of economics
and apply it to the understandingof emergent
Grid behavior. Last, if resourceownersareto be
convincedto federatetheir resourcesto theGrid,
they mustbeableto accountfor therelativecosts
andbenefitsof doingso.Any market formulation
carrieswith it aninherentnotionof relativeworth
which canbeusedto quantify thecost-to-benefit
ratio for bothGrid usersandstake-holders.

While thereareanumberof differentplausible
G-commercemarket formulationsfor the Grid,
we focus on two broad categories: commodi-
ties markets andauctions. The overall goal of
the ComputationalGrid is to allow applications
to treat computational,network, andstoragere-
sourcesas individual and interchangeablecom-
modities, and not specific machines,networks,
anddisk or tapesystems.ModelingtheGrid asa
commoditiesmarket is thusa naturalchoice.On
the otherhand,auctionsrequirelittle in the way
of global price information,andthey areeasyto
implementin a distributedsetting.Both typesof
economieshavebeenstudiedasstrategiesfor dis-
tributedresourcebrokering[11, 35, 25,6, 7, 10].
Our goal is to enhanceour deeperunderstanding
of how theseeconomieswill fareasresourcebro-
keringmechanismsfor ComputationalGrids.

To investigateComputationalGrid settingsand

G-commerceresourceallocation strategies, we
evaluatecommoditiesmarketsandauctionswith
respectto four criteria:

1. Grid-widepricestability

2. Market equilibrium

3. Applicationefficiency

4. Resourceefficiency

Pricestability is critical to ensureschedulingsta-
bility. If the price fluctuateswildly, application
andresourceschedulersthat basetheir decisions
onthestateof theeconomywill follow suit, lead-
ing to poor performance,and thereforeineffec-
tivenessof theGrid asacomputationalinfrastruc-
ture. Equilibrium measuresthe degreeto which
pricesare fair. If the overall market cannotbe
broughtinto equilibrium, the relative expenseor
worthof aparticulartransactioncannotbetrusted,
andagainthe Grid is not doing its job. Applica-
tion efficiency measureshow effective the Grid
is as a computationalplatform. Resourceeffi-
ciency measureshow well the Grid managesits
resources.Poor applicationand/or resourceef-
ficiency will meanthat the Grid is not succeed-
ing asa computationalinfrastructure. Thus,we
usethesefour criteria to evaluatehow well each
G-commerceeconomyworksasthebasisfor re-
sourceallocationin ComputationalGrids.

Theremainderof thispaperis organizedasfol-
lows. In thenext section,we discussthespecific
market formulationswe usein this study. Sec-
tion 3 describesthe simulationmethodologywe
useandthe resultswe obtainfor differenthypo-
thetical market parameterizations.In Section4
weconcludeandpoint to futurework.

2 G-commerce— Mark et Economies
for the Grid

In formulating a computationaleconomyfor
theGrid, we make two assumptions.#1: Therel-
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ativeworthof a resourceis determinedbyits sup-
ply andthedemandfor it. Thisassumptionis im-
portantbecauseit rulesout pricing schemesthat
arebasedonarbitrarilydecidedpriorities.For ex-
ample, it is not possiblein an economyfor an
organizationto simply declarewhat the price of
its resourcesare and then decreethat its users
pay that price even if cheaper, betteralternatives
are available. While thereare several plausible
scenariosin which suchDraconianpolicies are
appropriate(e.g. usersare fundedto usea spe-
cific machineaspart of their individual research
projects),from theperspectiveof theGrid, there-
sourceallocationproblemundertheseconditions
hasbeensolved.

Further, weassumethatsupplyanddemandare
functionsof price,andthat true relative worth is
representedattheprice-pointwheresupplyequals
demand– that is, at market equilibrium. Con-
versely, at a non-equilibriumprice-point(where
supplydoesnotequaldemand),priceeitherover-
statesor understatesrelativeworth.

#2: Resource decisionsbasedon self-interest
are inescapablein anyfederatedresourcesystem.
If we are to simulatea computationaleconomy,
we must ultimately hypothesizesupply and de-
mandfunctionsfor our simulatedproducersand
consumersrespectively. Individual supply and
demandfunctionsaredifficult to measureat best,
particularly since thereare no existing Compu-
tational Grid economieswhich we can observe.
Our admittedly less-satisfactory approachis to
definesupplyanddemandfunctionsthatrepresent
eachsimulatedproducerand consumer’s “self-
interest.” An individual consumerbuys only if
the purchaseis a “good deal” for that consumer.
Analogously, producerssellonly whenasaleis in
theirbestinterest.

In thenext section,we detail thespecificfunc-
tions we investigate,but generallyour approach
relieson thesetwo assumptions.

2.1 Producersand Consumers

To comparethe efficacy of commoditiesmar-
kets and auctions as Grid resourceallocation
schemes,we define a set of simulated Grid
producersand consumersrepresentingresource
providersandapplicationsrespectively. We then
usethe samesetof producersandconsumersto
comparecommodity and auction-basedmarket
settings.

We simulatetwo differentkinds of producers
in this study: producersof CPUs and produc-
ers of disk storage. That is, from the perspec-
tive of a resourcemarket, there are two kinds
of resourceswithin our simulatedGrids: CPUs
and disks. While the resultsshould generalize
to includea varietyothercommodities,networks
presenta specialproblem. Our consumermodel
is that an application may requesta specified
amountof CPU anddisk (the units of which we
discussbelow) andthattheserequestsmaybeser-
viced by any provider regardlessof location or
network connectivity. Sincenetwork links can-
not becombinedwith otherresourcesarbitrarily,
they cannotbemodeledasseparatecommodities.
We believe that network costcanbe represented
in termsof “shipping” costsin morecomplicated
markets, but for the purposesof this study, we
considernetwork connectivity to beuniform.

2.1.1 CPU Producer Model

In this study, a CPU representsa computational
enginewith a fixeddedicatedspeed.A CPUpro-
duceragreesto sell to the Grid somenumberof
fixed “shares”of the CPU it controls. The real-
world scenariofor this modelis for CPUowners
to agreeto hostafixednumberof processesfrom
theGrid in exchangefor Grid currency. Eachpro-
cessgetsa fixed, pre-determinedfraction of the
dedicatedCPU speed,but the owner determines
how many fractionsor “slots” heor sheis willing
to sell. For example,in our study, the fraction is
10%soeachCPUproduceragreesto sell a fixed
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number(lessthan 10) of 10%-sizedslots to the
Grid. Whena job occupiesa CPU, it is guaran-
teedto get 10% of the availablecycles for each
slot it consumes.EachCPU,however, differs in
thetotal numberof slotsit is willing to sell.

To determinesupply at a given price-point,
eachCPUcalculates�����
	 �
������� � ��������	�������	��� !��"�#$��%&" (1)

where '�(�)
(�*,+-( is the total amountof Grid cur-
rency (hereafterreferredto as $G which is pro-
nounced“Grid bucks”), */.�0 is an incrementing
clock, and 1�23.5461 is the total numberof process
slots the CPU owner is willing to support. The7 (589* :;'=<?>�( valueis theaverage$Gpertimeunit
per slot the CPU hasmadefrom selling to the
Grid. In our study, CPUproducerswill only sell
if the current price of a CPU slot exceedsthe7 (589* :;'=<?>�( value,andwhenthey sell, they sell
all unoccupiedslots.Thatis, theCPUwill sellall
of its availableslotswhenit will turn aprofit (per
slot)with respectto theaverageprofit over time.

2.1.2 Disk Producer Model

The modelwe usefor a disk produceris similar
to that for the CPU producer, except that disks
sell somenumberof fixed-sized“files” that ap-
plicationsmayusefor storage.The 7 (589* :�'
<@>�(
calculationfor diskfiles is�����
	 �
������� � �5������	�������	��� !���A���B���A�3%DC (2)

where>�8�:�8E>�<�4GF is thetotalnumberof filesadisk
produceris willing to sell to theGrid. If thecur-
rentpricefor afile is greaterthanthe 7 (589* :�'
<@>�( ,
adiskproducerwill sell all of its availablefiles.

Note that the resolutionof CPU slotsandfile
sizesis variable. It is possibleto make a CPU
slot equivalent to the durationof a single clock
cycle, anda disk file be a singlebyte. Sinceour
marketstransactbusinessat thecommoditylevel,
however, wehypothesizethatany realimplemen-
tationfor theGrid will needto work with larger-

scaleaggregationsof resourcesfor reasonsof effi-
ciency. For thesimulationsdescribedin Section3
we choosevaluesfor theseaggregationsthat we
believe reflect a market formulation that is cur-
rently implementable.

2.1.3 Consumersand Jobs

Consumersexpresstheir needsto the market in
the form of jobs. Eachjob specifiesboth a size
and an occupancy durationfor eachresourceto
be consumed.Eachconsumeralsosportsa bud-
getof $G that it canuseto pay for the resources
neededby its jobs.Consumersaregivenaninitial
budgetanda periodicallowance,but they arenot
allowedto hold$Goverfrom oneperioduntil the
next. Thismethodof budgetrefreshis inspiredby
theallocationpoliciescurrentlyin useat theNSF
Partnershipsfor AdvancedComputationalInfras-
tructure(PACIs). At thesecenters,allocationsare
perishable.

Whenaconsumerwishesto purchaseresources
for a job, it declaresthe size of the requestfor
eachcommodity, but not theduration.Our model
is that job durationsarerelatively long, andthat
producersallow consumersoccupancy without
knowing for how long theoccupancy will last.At
the time a produceragreesto sell to a consumer,
a price is fixed that will be charged to the con-
sumerfor eachsimulatedtime unit until the job
completes.

For example,considera consumerwishing to
buy aCPUslot for 100minutesandadiskfile for
300minutesto serviceaparticularjob. If thecon-
sumerwishesto buy eachfor aparticularprice,it
declaresto the market a demandof 1 CPU slot
and1 disk slot, but doesnot reveal the 100 and
300 minutedurations.A CPU producerwishing
to sell at the CPU price agreesto acceptthe job
until thejob completes(asdoesthediskproducer
for thediskjob). Oncethesalesaretransacted,the
consumer’sbudgetis decrementedby theagreed-
uponpriceeverysimulatedminute,andeachpro-
ducer’s revenueaccountis incrementedby the
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sameamount.If thejob completes,theCPUpro-
ducerwill haveaccrued100timestheCPUprice,
thediskproducerwill haveaccrued300timesthe
disk price, and the consumer’s budgetwill have
beendecrementedby the sum of 100 times the
CPUpriceand300timesthediskprice.

In definingthis methodof conductingresource
transactions,wemakeseveralassumptions.First,
we assumethat in anactualGrid settingresource
producersor supplierswill commitsomefraction
of their resourcesto theGrid, andthat fraction is
slowly changing. Oncecommitted,the fraction
“belongs” to the Grid so producersarenot con-
cernedwith occupancy. This assumptioncorre-
spondsto thebehavior of somebatchsystemsin
which,oncea job is allowedto occupy its proces-
sors,it is allowed to run eitheruntil completion,
or until its user’sallocationis exhausted.Produc-
ersareconcerned,in our models,with profit and
they only sell if it is profitableon theaverage.By
includingtime in thesupplyfunctions,producers
considerpastoccupancy (in termsof profit) when
decidingto sell. We arealsoassumingthat nei-
ther consumersnor producersaremaliciousand
that both honor their commitments.In practice,
this requirementassuredlywill bedifficult to en-
force.However, if consumersandproducersmust
agreeto usesecureauthenticationmethodsand
system-provided libraries to gain accessto Grid
resources,thenit will bepossible.

2.1.4 ConsumerDemand

Theconsumerdemandfunction is morecomplex
than the CPU and disk supply functions. Con-
sumersmustpurchaseenoughCPU anddisk re-
sourcesfor eachjob they wish to run. If they can-
not satisfythe requestfor only onetype, they do
not expressdemandfor theother. Thatis, thede-
mandfunctionsfor CPU and disks are strongly
correlated(althoughthesupplyfunctionsarenot).
This relationshipbetweensupply and demand
functions constitutesthe most difficult of mar-
ket conditions. Most theoreticalmarket systems

makeweaker assumptionsaboutthedifferencein
correlation.By addressingthemoredifficult case,
webelieveourwork morecloselyresembleswhat
canberealizedin practice.

To determinetheir demandat a given price,
eachconsumerfirst calculatestheaveragerateat
which it would have spent$G for the jobs it has
runsofar if it hadbeenchargedthecurrentprice.
It thencomputeshow many $G it canspendper
simulatedtime unit until thenext budgetrefresh.
Thatis, it computes�=��H �5�
%&� � IKJ %?��%@�=#  L����M J�N �
������� J �	��� (3)�O������PA#Q� �5�
%&� � �5���R�
��	��3	;H PS��T5H���%U ����V�����"�WYXZ	��� ![ (4)

where 4S.54S8E2 0\.�'�] J is the total amount of
work performed so far using commodity < ,:�'
<@>�( J is the current price for commodity < ,'=( 7 89<?*,<D*_^ `�+_ab^B(�4 is theamountleft to spendbe-
fore thebudgetrefresh,'=(�c_'=(�1�d is thebudgetre-
fresh time, and */.�0 is the currenttime. When>�8�:�8E`�23( '�8b4S( is greaterthanor equalto 89)E^ '=8b4S( ,
aconsumerwill expressdemand.

Unlike our supplyfunctions,theconsumerde-
mandfunction doesnot considerpastprice per-
formancedirectlywhendeterminingdemand.In-
stead,consumersusing this function act oppor-
tunisticallybasedon themoney they have left to
spendandwhenthey will receivemore.They use
pastbehavior only asan indicationof how much
work they expectto introduceandbuy whenthey
believethey canafford to sustainthis rate.

Consumers,in our simulations,generatework
asafunctionof time. Wearbitrarilyfix somesim-
ulatedperiodto bea “simulatedday.” At thebe-
ginningof eachday, every consumergeneratesa
randomnumberof jobs. By doing so, we hope
to model the diurnal userbehavior that is typi-
cal in large-scalecomputationalsettings. In ad-
dition, eachconsumercangeneratea singlenew
job every time stepwith a pre-determinedproba-
bility. Consumersmaintaina queueof jobswait-
ing for servicebeforethey areacceptedby pro-
ducers.Whencalculatingdemand,they compute
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89)9^ '�8b4S( and >�85:�8
`�23( '�8b4S( anddemandasmany
jobsfrom this queueasthey canafford.

To summarize,for our G-commercesimula-
tions:e All entitiesexceptthe market-maker act in-

dividually in their respectiveself-interests.e Producersconsiderlong-termprofit andpast
performancewhendecidingto sell.e Consumersaregivenperiodicbudgetreplen-
ishmentsandspendopportunistically.e Consumersintroducework loadsin bulk at
thebeginningof eachsimulatedday, andran-
domly throughouttheday.

We believe that this combinationof characteris-
ticscapturesareasonablesetof producerandcon-
sumertraitsin realGrid settings.

2.2 CommoditiesMark ets

In areal-world commoditiesmarket,commodi-
ties areexchangedin a centrallocation. Impor-
tant featuresof a commoditiesmarket are that
thegoodsof thesametypebroughtto market by
thevarioussuppliersareregardedasinterchange-
able, market price is publicly agreedupon for
eachcommodityregardedasawhole,andall buy-
ers and sellersdecidewhether(and how much)
to buy or sell at this price. Contrastthis type of
commercewith onebaseduponauctions,wherein
eachbuyerandselleractsindependentlyandcon-
tractsto buy or sell at a price agreedupon pri-
vately.

Since the goal of a computationalGrid is to
provideuserswith resourceswithoutregardto the
particularsupplier, it seemsverynaturalto model
a Grid economyusingcommoditiesmarkets. To
doso,werequireapricingmethodologythatpro-
ducesa systemof priceadjustmentswhich bring
about market equilibrium (i.e. equalizessupply
anddemand).

2.2.1 Pricing in Commodities Mark ets: Re-
sultsof EconomicResearch

Ourmodelis anexampleof anexchangeeconomy,
namelya systeminvolving agents(producersand
consumers),andseveralcommodities.Eachagent
is assumedto controlasufficiently smallsegment
of themarket. In otherwords,the individual be-
havior of any oneagentwill not affect thesystem
asa wholeappreciably. In particular, priceswill
be regardedasbeyond the control of the agents.
Givenasystemof prices,then,eachagentdecides
upon a courseof action, which may consistof
thesaleof somecommoditiesandthepurchaseof
otherswith theproceeds.Thuswe definesupply
anddemandfunctionsfor eachcommodity, which
arefunctionsof theaggregatebehavior of all the
agents.Thesearedeterminedby thesetof market
pricesfor thevariouscommodities.

Naturally, we usethe languageof vectorsfor
price,supply, anddemand;eachof thesewill be
an * -vector, where * is thenumberof commodi-
ties,of non-negative real numbers.Observe that
givena commoditybundle, that is an *gfh)
(5>�4S.�'
of quantitiesikjml/n�o�pqprproAl�s of the commodities,
and a price vector t the value of the bundle is
equalto tvuAi . For givenpricevector t , definethe
excessdemandwxjyw-z�t|{ to be the differenceof
thedemandandsupplyvectorsfor thispricelevel.
Equilibrium for theeconomyis establishedwhen
supplyis equalto demand;in otherwords,aprice
vector t is anequilibriumpricewhen w-z�t|{}j�~ .
It shouldbenotedthat,for ourpurposes,currency
will be regardedasanothercommodity. Thusa
producerof a non-currency commodity(CPU or
disk for thepurposesof thispaper)will simplybe
regardedas a “consumer”of currency; presum-
ably, the currency will be usedin someway for
thebenefitof theproducer.

In generalequilibrium theory, thereare three
hypothesesmadeon thefunctionz: homogeneity,
continuity, andadherenceto Walras’Law. Homo-
geneitymeansthatonly theratiosbetweenprices
areimportantto how commoditiesareexchanged.
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That is, w-z?��t�{�j�w-z�t|{ for any positive number� . This relationshipis naturally true, sincecur-
rency is regardedasa commodity. Continuity is
the propertythat excessdemandis a continuous
function of the prices, which cannothold liter-
ally in oursituation,dueto theindivisibility of the
commodities.However, we assumethatthenum-
ber of agentsis large enoughthat all functions
maybeapproximatedby continuousfunctionsof
continuousvariables.Finally, Walras’Law states
that for any price, w-z�t|{�uBt�j�� . This assump-
tion is justified as follows: When eachagentis
supplyingthesametotal valueasthatagentis de-
manding,thevalueof thetotal supplybundle � is
equalto thatof thetotal demandbundle � . Thus,
asobserved above, t�uB��j�t�uB� , andthereforet�u
w�jyt�u-zD�xf��5{�jm~ . Walras’ Law will ap-
ply aslongasdemandis locally non-satiated, that
is, givena level of consumption,thereis alwaysa
preferencefor greaterconsumption(pricenot be-
ing anobject).

When theseassumptionshave been met, an
equilibrium price vectorhasbeenproven to ex-
ist via topologicalmethods,namelytheBrouwer
fixed-pointtheorem (see[13], Chapter5, for the
result in its original form, or a remarkablyclear
exposition in [15], Chapter6). Thesemethods
arenon-constructive,sothattheproblemremains
to find a methodof price adjustmentthat brings
aboutequilibrium or at leastapproximatesequi-
librium within reasonabletolerances.

A few words on this last point are in order.
From a purely “engineering”standpoint,reach-
ing preciseeconomicequilibrium is surely im-
possible. Thus we must contentourselves with
the moremodestgoal of producinga price vec-
tor for which the excessdemandsare all close
to � . Since the excessdemandfunctions can
be quite general,it is alwayspossiblethat there
exists a price vector which producesexcessde-
mandswhichareall within aprescribedtolerance
of � andyet is not closeto anactualequilibrium
point; further, thereis no “engineering”method
whichwill distinguishthis from apointwhich re-

ally is very nearto an equilibrium price. Even
Scarf’s algorithm,describedbelow, which haser-
roneouslybeencalleda “constructive versionof
the Brouwer fixed-pointtheorem,” is only guar-
anteedto producepointswhich areapproximate
equilibria in the first sense. Thus we will use
thephrase“approximateequilibrium” to referto a
pricewhichmakestheexcessdemandsall closeto� without judgingwhetherit livesneara genuine
equilibrium point. In any event, the theoretical
existenceof an equilibrium price guaranteesthe
existenceof approximateequilibria. Moreover,
approximateequilibria arevaluable: If the mar-
ket is approximatelycleared,thentheeconomyis
doingagoodjob of distributinggoods.

Walras in [37] suggesteda processcalled
tâtonnement(“groping”) by which real-world
marketscometo equilibrium. With tâtonnement,
eachindividualpriceis raisedor loweredaccord-
ing to whetherthatcommodity’sexcessdemandis
positive or negative. Then,new excessdemands
aremeasured,andthe processis iterated. While
it wassuggestedonly asa “behavioral” explana-
tion asto how real-world marketsreachequilib-
rium, tâtonnementformedthe basisfor early at-
temptsto prove theexistenceof equilibrium. It is
now known that tâtonnementdoesnot in general
leadto a convergentprocess;Scarf in [30] pro-
duceda very simpleexamplefor which thereis a
uniqueequilibriumbut for which,from almostev-
ery startingpoint, the tâtonnementprocessoscil-
latesfor all time. In fact, tâtonnementdoesbring
aboutconvergenceto anequilibriumpricevector
underthevery stronghypothesisof grosssubsti-
tutes, which statesthat increasingthe �b��� price
while holdingtheothersconstantwill bringabout
an increasein excessdemandin all commodities
otherthanthe �9��� . Unfortunately, for typicalGrid
applications,the hypothesisof grosssubstitutes
doesnot hold, becausedifferentcommoditiesare
often complementary. (For example,an applica-
tion mayneedbothCPUanddisk in orderto ex-
ecute.If theprice for CPUsis too high, thenthe
application’s demandfor diskswill be lower in-

7



steadof higher.)
Thereare several different approachesto the

problem of finding an algorithm for adjusting
prices which will lead to equilibrium. Scarf’s
algorithm (see[31]) works roughly as follows:
Supposethat thereare *���� commodities,and
normalizethe pricesso that their sum is always
equal to � . The set of possibleprice vectors
thusformsan * -dimensionalsimplex in � s��_n (the
price simplex). Scarf then divides this simplex
into a large numberof subsimplicesand shows
thatthereexistsasubsimplex any of whosepoints
provides an approximateequilibrium price. He
also provides an explicit formula for how fine
to make the subdivision in order to producean
excessdemandwithin a pre-specifiedtolerance.
Merrill [23] gives an important improvementto
Scarf’s algorithmwhich makesit far moreattrac-
tive from a computationalstandpoint.A different
sort of refinementof this idea is to be found in
Eaves’ algorithmwith “continuousrefinementof
grid size” [14].

A second approach, advocated by Smale
in [32], is morein thespirit of multivariablecal-
culus and is more dynamic in the sensethat it
aimsto producea trajectoryfor thepricesto fol-
low. In Smale’s method,the pricesare normal-
ized by fixing one of the commodities(the nu-
meraire) to have price � ; in our case,this com-
moditywill bethecurrency. Further, supposethat
thereare * othercommodities,so that the setof
possiblepricesforms the positive orthantin � s .
Formthe *���* matrix� � z�t|{¡j ¢L£ wE¤£ t�¥
¦ p
Now definetheglobal Newtonordinarydifferen-
tial equation � � z�t|{ �§t�§¨ j©f}��w-z�t|{ (5)

where � is a constantwhich has sign equal tozGfª�5{ s timesthesignof thedeterminantof
��� z3t«{ .

(For contrast,notethatthetâtonnementprocessis

encapsulatedin thedifferentialequation
a9tab4 j¬w .

Thus the global Newton may be regardedas a
moresophisticatedversionof tâtonnementwhich
takes into accountthe interdependenciesof the
way demandsfor the variouscommoditiesinter-
act with the variousprices.) Smaleprovesthat,
underboundaryconditionswhich are justifiable
on the basisof the desirabilityof the commodi-
ties,almostevery maximalsolutionof theglobal
Newton equationstartingsufficiently nearto the
boundaryof thepositiveorthantof � s (or to ­ )
will convergeto thesetof equilibriumprices.

Notethatexceptunderstronghypotheses,most
commonlygrosssubstitutes,the theorydoesnot
guaranteethatthereis a uniqueequilibriumprice
vector. However, there is a useful result along
theselines as follows: Definea regular equilib-
riumto beonefor whichthematrix

� � z�t|{ defined
above is nonsingular. Then accordingto [22],
Theorem5.4.2,a regularequilibrium price is lo-
cally uniquein thesensethat it is theonly onein
someopensubsetof thespaceof pricevectors.

2.2.2 Price Adjustment Schemes

Herein we examine the resultsof using several
price adjustmentschemesin simulatedcomputa-
tional market economies.Smale’s methodis not
possibleto usedirectly for a numberof reasons.
First, any actualeconomyis inherentlydiscrete,
sothepartialderivativesin equation5 do not ex-
ist, strictly speaking.Second,giventhebehavior
of theproducersandconsumersdescribedabove,
therearethresholdpricesfor eachagentthatbring
aboutsuddenradicalchangesin behavior, sothat
a reasonablemodelfor excessdemandfunctions
would involve sizeablejump discontinuities.Fi-
nally, the assumptionsin Smale’s modelarethat
supply and demandare functions of price only
andindependentof time,whereasin practicethere
area numberof waysfor supplyanddemandto
changeover time for agivenpricevector.

Observe that taking ��j � and applying the
Euler discretizationat positive integer valuesof
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4 reducesthis processto the Newton-Raphson
methodfor solving w-z�t|{�j ~ ; this observation
explainstheterm“global Newton.”

Implementing Smale’s method: As observed
above,obtainingthepartialderivativesnecessary
to carryoutSmale’sprocessin anactualeconomy
is impossible;however, within the framework of
our simulatedeconomy, we areableto get good
approximationsfor the partialsat a given price
vector by polling the producersand consumers.
Startingwith a price vector, we find their pref-
erencesat pricevectorsobtainedby fixing all but
onepriceandvaryingtheremainingpriceslightly,
thusachieving a “secant-line”approximationfor
eachcommodity separately;we then substitute
theseapproximationsfor thevaluesof thepartial
derivatives in the matrix

� � z3t«{ , discretizewith
respectto time, solve Equation 5 for the incre-
ment aEt to getour new price vector, anditerate.
Wewill refer, convenientlybut somewhatinaccu-
rately, to thispriceadjustmentschemeasSmale’s
method.

The First Bank of ® : The drawback to the
above schemeis that it relieson polling the en-
tire market for aggregatesupplyanddemandre-
peatedlyto obtain the partial derivatives of the
excessdemandfunctions. If we wereto try and
implementSmale’smethoddirectly, eachindivid-
ualproducerandconsumerwouldhave to beable
to respondto the question“how much of com-
modity l wouldyoubuy (sell) atpricevectorp?”
In practice,producersandconsumersmaynot be
ableto make sucha determinationaccuratelyfor
all possiblevaluesof p. Furthermore,even if
explicit supply and demandfunctionsare made
into anobligationthatall agentsmustmeetin or-
der to participatein anactualGrid economy, the
methodologyclearlywill notscale.For theserea-
sons,in practice,we do not wish to assumethat
suchpolling informationwill beavailable.

A theoretically attractive way to circumvent
this difficulty is to approximateeachexcessde-

mandfunction ¯ J by a polynomialin :,n�o?:�°�o�pqprpqoD:;s
whichfits recentpriceandexcessdemandvectors
andto usethepartialderivativesof thesepolyno-
mials in Equation5. In simulations,this method
doesnot, in general,produceprices which ap-
proachequilibrium. The First Bank of G is a
price adjustmentschemewhich both is practica-
ble andgivesgoodresults;this schemeinvolves
using tâtonnement(see above) until prices get
“close” to equilibrium, in the sensethat excess
demandshave sufficiently small absolutevalue,
and then using the polynomialmethodfor “fine
tuning.” Thus, the First Bank of G approxi-
matesSmale’s methodbut is implementablein
real-world Grid settingssinceit hypothesizesex-
cessdemandfunctionsandneednotpoll themar-
ket for them. Our experienceis that fairly high-
degreepolynomialsarerequiredto captureexcess
demandbehavior with the sharpdiscontinuities
describedabove. For all simulationsdescribedin
Section3, weuseadegree17 polynomial.

2.3 Auctions

Auctionshave beenextensively studiedasre-
sourceallocationstrategies for distributed com-
puting systems. In a typical auction system
(e.g. [11, 35, 25, 6]), resourceproducers(typi-
cally CPU producers)auction themselves using
a centralizedauctioneerandsealed-bid,second-
priceauctions.That is, consumersplaceonebid
with theauctioneer, andin eachauction,thecon-
sumerwith the highestbid receivesthe resource
at theprice of thesecond-highestbidder. This is
equivalentto “just” outbiddingthesecond-highest
bidder in an open,multi-roundauction,anden-
couragesconsumersto bid what the resourceis
worth to them(see[6] for further descriptionof
auctionvariants).

Whenconsumerssimply desireonecommod-
ity, for exampleCPUsin Popcorn[25], auctions
provideaconvenient,straightforwardmechanism
for clearing the marketplace. However, the as-
sumptionsof a Grid Computing infrastructure

9



posea few difficulties to this model. First, when
anapplication(theconsumerin aGridComputing
scenario)desiresmultiple commodities,it must
placesimultaneousbidsin multiple auctions,and
may only be successfulin a few of these.To do
so,it mustexpendcurrency on theresourcesthat
it hasobtainedwhile it waits to obtain the oth-
ers. This expenditureis wasteful,andthe uncer-
tainnatureof auctionsmayleadto inefficiency for
bothproducersandconsumers.

Second,while a commoditiesmarket presents
anapplicationwith a resource’s worth in termsof
its price, thus allowing the applicationto make
meaningfulschedulingdecisions,an auction is
moreunreliablein termsof both pricing andthe
ability to obtaina resource,andmaythereforere-
sult in poorschedulingdecisionsandmoreineffi-
ciency for consumers.

To gain a better understandingof how auc-
tions fare in comparisonto commoditiesmar-
kets,weimplementthefollowingsimulationof an
auction-basedresourceallocationmechanismfor
computationalgrids. At eachtime step,CPUand
disk producerssubmittheir unusedCPUandfile
slots to a CPU anda disk auctioneer. Theseare
accompaniedby a minimumsellingprice,which
is the averageprofit per slot, asdetailedin Sec-
tion 2.1.1 above. Consumersuse the demand
function as describedin Section2.1.3 to define
their bid prices,andaslong asthey have money
to bid on a job, anda job for which to bid, they
bid oneachcommodityneededby theiroldestun-
commencedjob.

Oncetheauctioneershave receivedall bidsfor
a time step,they cycle throughall thecommodi-
tiesin arandomorder, performingoneauctionper
commodity. In eachauction,thehighest-bidding
consumergets the commodity if the bid price
is greaterthanthe commodity’s minimum price.
If there is a second-highestbidder whoseprice
is greaterthanthe commodity’s minimum price,
then the price for the transactionis the second-
highestbidder’s price. If thereis no suchsecond-
highestbidder, then the price of the commodity

is theaverageof thecommodity’sminimumsell-
ing price andthe consumer’s bid price. Whena
consumerandcommodityhavebeenmatched,the
commodityis removedfrom the auctioneer’s list
of commodities,asis theconsumer’s bid. At that
point,theconsumercansubmitanotherbid to that
or any otherauction,if desired.Thissituationoc-
curswhenaconsumerhasobtainedall commodi-
ties for its oldestuncommencedjob, andhasan-
other job to run. Auctionsare transactedin this
mannerfor every commodity, andtheentireauc-
tion processis repeatedat every timestep.

Notethatthisstructuringof theauctionsmeans
thateachconsumermayhave at mostonejob for
which it is currentlybidding. Whenit obtainsall
the resourcesfor that job, it immediatelystarts
biddingon its next job. Whena time stepexpires
andall auctionsfor thattimestephavebeencom-
pleted, there may be several consumerswhose
jobshave someresourcesallocatedandsomeun-
allocated,asaresultof failedbidding.Thesecon-
sumershave to pay for their allocatedresources
while they wait to startbidding in the next time
step.

While theauctionsdeterminetransactionprices
basedon individual bids, thesupplyanddemand
functionsusedby the producersand consumers
to set ask and bid price are the samefunctions
we usein the commoditiesmarket formulations.
Thus, we can comparethe market behavior and
individual producerand consumerbehavior in
bothauctionandcommoditymarketsettings.

3 Simulations and Results

We comparecommoditiesmarkets and auc-
tions using the producersand consumersde-
scribed in Section 2.1 using two overall mar-
ket settings. In the first, which we term under-
demand, producers are capable of supplying
enoughresourceto serviceall of the jobs con-
sumerscan afford. Recall that our markets do
not includeresalecomponents.Consumersdonot
make money. Instead,$G aregiven to thempe-
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CPUs 100
disks 100
CPUslotsperCPU [2 .. 10]
diskfilesperdisk [1 .. 15]
CPUjob length [1 .. 60] timeunits
disk job length [1 .. 60] timeunits
simulatedday 1440timeunits
allowanceperiod [1 .. 10] days
jobssubmittedat day-break [1 .. 100]
new job probability 10%
allowance �5��± $G
Bankof G PolynomialDegree 17� factor .01

Table 1. Invariant sim ulation parameter s for
this stud y

riodically muchthe in the sameway that PACIs
dole out machine-timeallocations. Similarly,
producersdo not spendmoney. Oncegathered,
it is hoardedor, for the purposesof the econ-
omy, “consumed.” The under-demandcasecor-
respondsto a Grid economyin which thealloca-
tions exceedwhat is necessary(in termsof user
demand)to allocateall availableresources.Such
a situationoccurswhen the rate that $G are al-
locatedto consumersis greaterthan the rate at
which they introducework to the Grid. In the
over-demandcase,consumerswish to buy more
resourcethanis available.New jobsaregenerated
fast enoughto keep all producersalmost com-
pletelybusy, therebycreatingawork back-log.

Table1 completelydescribestheinvariantsim-
ulation parameterswe use for both under- and
over-demandcases. For all ranges(e.g. slots
per CPU), uniform pseudo-randomnumbersare
drawn from betweenthe given extrema. For the
under-demandsimulation, we define �5�b� con-
sumersto usethe �5��� CPUsanddisks.Eachcon-
sumersubmitsarandomnumberof jobs(between� and �5��� ) at every day-break,and has a 10%
chanceof submittinga new job every time unit.

Theover-demandsimulationspecifies²��b� of the
sameconsumers,with all other parametersheld
constant.

Usingoursimulatedmarkets,wewishto inves-
tigatethreequestionswith respectto commodities
marketsandauctions.

1. Do the theoretical results from Smale’s
work [33] apply to plausibleGrid simula-
tions?

2. Can we approximateSmale’s methodwith
onethat is practically implementable?

3. Are auctions or commodities markets
a better choice for Grid computational
economies?

Question(1) is importantbecauseif Smale’s re-
sultsapply, they dictatethatanequilibriumprice-
point mustexist (in a commoditymarket formu-
lation), andthey provide a methodologyfor find-
ing those prices that make up the price-point.
Assumingthe answerto question(1) is affirma-
tive, we alsowish to explore methodologiesthat
achieveorapproximateSmale’sresults,but which
are implementablein real Grid settings. Lastly,
recentwork in Grid economies[1, 18, 28] and
muchprevious work in computationaleconomic
settings[12, 26, 5, 36] hascenteredon auctions
asthe appropriatemarket formulation. We wish
to investigatequestion(3) to determinewhether
commoditiesmarketsarea viablealternative and
how they compareto auctionsasamarket-making
strategy.

3.1 Mark et Conditions, under-demandcase

Figure 1 shows the CPU and disk prices for
Smale’s methodin our simulatedGrid economy
over �5��o��b��� timeunits.Thediurnalnatureof con-
sumerjob submissionis evident from the price
fluctuations. Every 1440 “minutes” eachcon-
sumer generatesbetween1 and 100 new jobs
causingdemandand prices to spike. However,
Smale’s method is able to find an equilibrium
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Figure 1. Smale’s prices for the under -
demand case . Solid line is CPU price , and
dotted line is disk price in $G

price for both commoditiesquickly, as is evi-
dencedin Figure 2. Notice that the excessde-
mandspikesin conjunctionwith thediurnalload,
but is quickly broughtnearzero by the pricing
shown in Figure1 whereit hoversuntil the next
cycle. Figure 3 shows excessdemandfor disk
duringthesimulationperiod.Again,approximate
market equilibrium is quickly achieved despite
the cyclic andnon-smoothaggregatesupplyand
demandfunctionsimplementedby theproducers
andconsumers.

In Figure 4 we show the pricing determined
by our engineeringapproximation to Smale’s
method— theFirstBankof G. TheFirst Bankof
G pricing closelyapproximatesthe theoretically
achievable resultsgeneratedby Smale’s method
in oursimulatedenvironment.TheBank,though,
doesnot requirepolling to determinethe partial
derivativesfor the aggregatesupplyanddemand
functions.Instead,it usesaniterativepolynomial
approximationthat it derivesfrom simpleobser-
vationsof purchasingandconsumption.Thus it
is possibleto implementthe First Bank of G for
usein arealGrid settingwithoutpolling Gridpro-
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Figure 2. Smale’s CPU excess demand for the
under -demand case . The units are CPU slots.

ducersor consumersfor their supplyanddemand
functionsexplicitly. Figures5 and 6 show ex-
cessdemandmeasuresgeneratedby First Bank
of G pricing over the simulatedperiod. While
theexcessdemandsfor bothcommoditiesarenot
astightly controlledaswith Smale’s method,the
First Bank of G keepspricesvery nearequilib-
rium.

Thepricingdeterminedby auctionsis quitedif-
ferent, however, as depictedin Figures7 and 8
(we show CPU anddisk price separatelyasthey
arealmostidenticalandobscurethe graphwhen
overlayed). In the figure, we show the average
pricepaidby all consumersfor CPUduringeach
auctionround. We usethe averageprice for all
auctionsas being representative of the “global”
market price. Eventhoughthis priceis smoothed
as an average(someconsumerspay more and
somepay lessduring eachtime step), it shows
considerablymorevariancethanpricessetby the
commoditiesmarket. Thespikesin workloadare
not reflectedin theprice,andthevarianceseems
to increase(i.e. the price becomeslessstable)
over time.

Excessdemandfor anauctionis moredifficult
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Figure 3. Smale’s disk excess demand for the
under -demand case . The units are sim ulated
file units.

to measuresincepricesarenegotiatedbetweenin-
dividualbuyersandsellers.As anapproximation,
we considerthe sumof unsatisfiedbids and the
numberof auctionsthat did not make a saleas
a measureof market disequilibrium. Under this
assumption,the market is in equilibrium when
all bidsaresatisfied(demandis satisfied)andall
auctionedgoodsare sold (supply is exhausted).
Any surplusgoodsor unsatisfiedbids are “ex-
cess.” While is doesnot make senseto assigna
signto thesesurpluses(surplussupply, for exam-
ple, may not be undemandedsupply)in the way
thatwecanwith aggregatesupplyanddemandin
a commoditymarket, in absolutevaluethis mea-
surecapturesdistancefrom equilibrium. Hence
we termit absoluteexcessdemand.

In Figure9 weshow thismeasureof excessde-
mandfor CPUsin the under-demandedauction.
Figure 10 shows the samedata as in Figure 5
from the First Bank of G, but in absolutevalue.
While theFirst Bankof G shows morevariance

in absoluteexcessdemand,it achieves approxi-
mateequilibrium and sustainsit over relatively
long periods.By contrast,theauctionsetsprices
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Figure 4. First Bank of G prices for the under -
demand case . Solid line is CPU price , and
dotted line is disk price in $G

thatnever satisfythemarket. Strangely, theauc-
tion comesclosestto equilibrium whendemand
spikesat eachday-break.We areworking to un-
derstandthisbehavior andwill reporton it aspart
of our futurework.

From thesesimulationdatawe concludethat
Smale’smethodis appropriatefor modelingahy-
potheticalGrid market andthat theFirst Bankof
G is a reasonable(and implementable)approxi-
mationof this method. Theseresultsaresome-
what surprising given the discreteand sharply
changingsupply and demandfunctionsusedby
our producersand consumers. Smale’s proofs
assumecontinuousfunctions and readily avail-
able partial derivatives. We also note that auc-
tioneering,while attractive from an implementa-
tion standpoint,doesnot producestablepricing
or marketequilibrium.If Grid resourceallocation
decisionsare basedon auctions,they will share
this instability andlack of fairness.A commodi-
ties market formulation, at least in simulation,
performsbetterfromthestandpointof theGrid as
a whole. Theseresultsagreewith thosereported
in [36] which indicatethat auctionsare locally
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Figure 5. First Bank of G CPU excess demand
for the under -demand case . The units are
CPU slots.

advantageous,but may exhibit volatile emergent
behavior systemwide.

3.2 Mark et Conditions, over-demandcase

For theover-demandmarket case,we increase
thenumberof consumersto 500leaving all other
parametersfixed. As in the under-demandcase,
Smale’s method producesa stable price series
which the Bank of G is able to approximatebut
which auctionsareunableto match.We omit the
bulk of the resultsin favor of examiningthe be-
havior of both Smale’s methodand the Bank of
G asthey converge to an approximateeconomic
equilibrium.

Figure 11 shows the pricing information us-
ing Smale’s methodfor theover-demandmarket,
andFigure12showsthepricesdeterminedby the
FirstBankof G. NotethatSmale’smethoddeter-
minesa higherprice for disk thanCPU andthat
theFirstBankof G choosesasignificantlyhigher
price for CPU, but a lower price for disk. Intu-
itively one expectsa higher price for CPU than
disk sinceCPU is the “rarer” commodityin our
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Figure 6. First Bank of G disk excess demand
for the under -demand case . The units are
sim ulated file units.

simulation. The Bank of G would seemto cor-
rectly identify CPUasthescarcercommodityby
settinga higherprice for it. Nonetheless,excess
demandgraphs(Figures13 and 14) for CPUin-
dicatethatbothsolutionmethodsarecenteredon
market equilibrium. While it is difficult to read
from the graphs(we usea uniform scaleso that
all graphsof a certaintype in this studymay be
compared),themeanexcessdemandfor thedata
shown in Figure13is ²b·
p¹¸ , andthetheFirstBank
of G datain Figure14, themeanexcessdemand
is ·b²Bp¹º . Both of thesevaluesarenearenoughto
zeroto constituteapproximateequilibria for our
purposes.

3.3 Multiple Equilibria

We wish to examine more closely the phe-
nomenonof apparentmultiple economicequilib-
ria within our simulatedmarket. In particular, we
claimthatboththesolutionsarrivedatby Smale’s
methodandby the Bank of G arevalid approxi-
mationsof economicequilibria and may in fact
beapproximationsof actualequilibria. To facili-
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Figure 7. Auction prices for the under -
demand case, average CPU price onl y, in $G

tateour examination,we will examinetheaggre-
gatesupply and demandfunctionsover all pro-
ducersandconsumersat particularpoints in the
simulation. To do so, we freezethe simulation
after it hasreachedapproximateequilibriumand
thenquerytheproducersandconsumersfor sup-
ply and demandvaluesover a rangeof prices.
This techniqueproducesa profile of themacroe-
conomicsupplyanddemandcurveswhichshould
revealequilibriaat their intersectionpoints.

Recall that, in our simulatedeconomy, CPU
and disk are highly complementary. Since de-
mandfor one commodity is not independentof
demandfor the other, we mustgeneratefamilies
of aggregatedemandcurves, in which the price
of onecommodityis heldconstantwhile theprice
of the othercommodityis variedover the spec-
ified range. Eachgenerateddemandcurve in a
family is associatedwith a singlefixed price for
theothercommodity. Then,thefixedprice is in-
crementedandanotheraggregatesupplycurve is
generated.This processcontinuesuntil thefixed
price also reachesthe upper limit of the speci-
fied pricerange.If generatingaggregatedemand
curvesfor theCPUcommodity, for example,the
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Figure 8. Auction prices for the under -
demand case, average disk price onl y, in $G

simulatorproducesonecurveperpriceof thedisk
commodity.

Note that, together, thesefamilies of curves
form a three-dimensionalsurfacefor eachcom-
modity in which the axes are CPU price, disk
price,anddemand.That is, for eachorderedpair
of CPU anddisk pricesthereis a corresponding
CPUdemandvalue.Similarly, asecondsurfaceis
formedfrom the CPUprice,disk price,anddisk
demandcoordinates.

In contrast,the supplyof a commodityin our
economyis never correlatedwith the supply of
anothercommodityandvariesonly with price,so
it is not necessaryto producefamiliesof aggre-
gatesupply curves. Instead,we producea sin-
gle supplycurve by freezingthe simulationand
varyingthepriceof acommodityoversomerange
while queryingfor aggregatesupplyat eachnew
pricevalue.

Figures 15, 16, 17 and 18 show aggre-
gatesupplyanddemandcurvesfor CPUanddisk
in the over-demandcase. Both Smale’s method
and the Bank of G are shown. The simulation
freezesat time slice 2000 and producesaggre-
gatecurves. Ratherthanrepresentingthe three-
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Figure 9. Auction absolute excess demand for
CPU in the under -demand case . The units are
CPU slots.

dimensionalsurfaceof pricesanddemand(which
is difficult to representwithout theuseof color),
we depict the relationshipsin termsof a labeled
two-dimensionalprojection.

In Figure15, the l axis representsCPU price
and the F axis correspondsto CPU units (either
of supplyor demand).Eachnearlyverticalcurve
is a CPUdemandfunction relatingCPUprice to
CPU demandfor a given disk price (shown asa
label on eachcurve at the top of the graph). We
only show CPU demandcurvesat 10 $G incre-
ments,althoughoneexistsfor eachpossibleprice.
As a thick gray line, we show the CPU demand
curvethatcorrespondsto thediskprice($G211.4
in the figure) that Smale’s methoddeterminedat
the time we froze thesimulation. The thick dot-
ted line nearthe bottomof the graphshows the
CPU supplycurve asa function of price. The l
coordinateof the price point wherethe CPU de-
mandcurve (shown in thick gray) intersectsthe
CPU supplycurve (dottedblack) correspondsto
theapproximateequilibriumpricefor CPUwithin
simulatedeconomyat the given time step. The
solid circle on the graph shows the price-point
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Figure 10. First Bank of G absolute excess
demand for CPU in the under -demand case .
The units are CPU slots.

thatSmale’smethoddeterminedfor thesametime
step. If the circle covers the intersection(as it
doesin Figure15) the price adjustmentstrategy
hascorrectlydeterminedanapproximateequilib-
rium pricefor theeconomy.

Similarly, in Figures16, 17, and 18 the de-
mandcurves are labeledwith the fixed price of
the othercommodityusedto producethe curve:
for example,oneCPUdemandcurve shown cor-
respondsto holding the price of disk to $G 200
while varying the price of CPU. Sincedemand
for onetypeof commodityis tied to demandfor
theother, thedemandcurvefamiliesfor bothdisk
andCPUtendto besimilar. Only a few demand
curves in the family are shown, but it is impor-
tant to notethat an infinity of suchcurvesexist,
forming a demandcurve surface. Also shown
in Figures 16, 17 and 18 aretheaggregatesup-
ply curvesfor eachcommodity, shown in a thick
dottedline. Supplyof bothcommoditiesremains
constantacrossthepricerangeshown,becauseall
simulatedsuppliersare“producing” at maximum
capacity. No matterhow high the price may be
set,no moreCPU or disk is availablewithin the
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Figure 11. Smale’s CPU and disk prices for the
over-demand case . Solid line is CPU price ,
dotted line is disk price , and the units are $G.

economy.
Figures 15and 16 havebeenobtainedby run-

ning Smale’s methoduntil it reachesan approx-
imate equilibrium at a CPU price of about $G
161.8anda disk priceof about$G 211.4,which
aremarkedasheavy dotsontherespectivegraphs.
For Figure 15, the disk priceswere then artifi-
cially fixedatvariousvaluesandtheCPUdemand
curves,labelledby diskpriceacrossthetopof the
graph,weregeneratedby polling theconsumers.
Again, in principlethereexist demandcurvesfor
all possiblediskprices;wehaveshown only mul-
tiples of $G 10. For Figure 16, the rolesof the
commoditiesare reversed. Note that supply of
eachcommodityis afunctionof thatcommodity’s
price alone,so that only onesupplycurve exists
oneachof thegraphs.

Figure 15 shows that the CPU market is
clearedfor a CPU price of about$G 161 (read
from thehorizontalaxis)andadiskpriceof about
$G 211 (readfrom the family of curves). Sim-
ilarly, one finds from the heavy dot in Figure
16 that the disk market is clearedfor about the
samerespective pricesfor disk and CPU. How-
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Figure 12. First Bank of G CPU and disk prices
for the over-demand case . Solid line is CPU
price , dotted line is disk price , and the units
are $G.

ever, from the graphsit is possibleto find other
pricecombinationswhich cleareachmarket sep-
arately. For example, it is evident from Figure
15 that a CPU price of about$G 175 anda disk
price of $G 200 will alsoclearthe market, since
the CPU demandcurve correspondingto a disk
price of $G 200 intersectsthe supplycurve at a
point wheretheCPUpriceis about$G 175.Now
look at Figure 16. It seemsthat a disk price of
about$G 200 and a CPU price of $G 175 will
clear the disk market aswell! Moreover, within
the rangeof pricesshown on the two graphs,it
looksasthoughanypricevectorwhichclearsone
market alsoclearstheothermarket aswell, or at
leastvery nearly so. Thus it would appearthat
thereis a wholeconnectedcurve of market equi-
libria for our economy.

Froma“behavioral” standpoint,thissetof rela-
tionshipsbetweensupply, demand,andpricemay
be explainedas follows: The two commodities
areextremelycomplementary, meaningthat they
areusedtogetherratherthanin competitionwith
oneanother. As longastheconsumershavesome
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Figure 13. Smale’s CPU excess demand for
the over-demand case . The units are CPU
slots.

choiceas to which jobs to perform (as they do
in the overdemandcase,sincejob queuesnever
clear),andaslong asthepriceof onecommodity
is loweredin conjunctionwith arisein thepriceof
theother, it is alwayspossiblefor theconsumers
to make purchasingdecisionswhich allow them
to spendtheir allotment,choosing,if the prices
aredifferent,to completejobswhicharemorein-
tensivein thecommoditywhich is lessexpensive.

It is interestingto notethatin thiscaseonecan
find the point in the theory wherethe hypothe-
seswhich rule out non-locally-uniqueequilibria
break down. It is apparentthat in our experi-
mentsthe two commoditiesare so complemen-
tary that the demandfunctionsshift in the same
way in responseto increasesin eitherprice.Thus
thecolumnsof theJacobianmatrix

��� z3t«{ of par-
tial derivativesof theexcessdemandwith respect
to priceare(approximately)linearlydependentat
equilibrium. By definition, then,theequilibrium
is not regular, and thereforeit neednot be lo-
cally uniqueaccordingto thetheory(Cf. Section
2.2.1).

In any event, it would seemthat theseappar-

0
´

2000
´

4000
´

6000
´

8000
´

10000
´

Time (s)

0

1000

2000

3000

4000

5000

A
bs

ol
ut

e 
E

xc
es

s 
D

em
an

d

»

Figure 14. First Bank of G CPU excess de-
mand for the over-demand case . The units
are CPU slots.

ent multiple equilibria arisenot becauseof any
anomaliesin our methodper se, but ratherbe-
causeour experimentaleconomyis so very sim-
ple as to consistof only two commodities(plus
currency) whichareessentiallyin perfectcomple-
mentarity. Onewould expect that, as the model
becomesmorecomplex, thisparticularsortof dif-
ficulty will vanish. Further, even in thepresence
of multiple equilibria, eachof our price adjust-
mentschemescontinuedto behave in sucha way
asto producelong-termstabilityandapproximate
market-clearing. This is all that onecan practi-
cally hopefor, sinceevenin well-behaved(“regu-
lar”) economies,theremaybemultiple (isolated)
equilibriawith norationalbasisfor choiceamong
them.

Our implementation of Smale’s technique,
then,findsa valid equilibriumprice from among
a spaceof possibleequilibria. The Bank of G
alsofindsa valid pricesolution,albeita different
onefrom Smale’s technique.In Figures 17 and
18, we show the supplyanddemandcurve fam-
ilies aswell astheir price solutionsfor theBank
of G. Note againthat the pricescorrespondto a
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Figure 15. CPU aggregate suppl y and demand
cur ves for Smale’s method, over-demand
case, iteration 2000.

global equilibrium; the CPU price point lies at
the intersectionof theCPUsupplycurve andthe
CPU demandcurve correspondingto disk price
of $G166.Sincethemarket is in anover-demand
situation,resourceconsumershave no choicein
the mix of jobs they run. Rather, they can run
only jobs for which some supply is available.
Consumers’jobs queuewaiting to be serviced,
and this queuecontainsa mixture of CPU- and
disk-intensive jobs. Thus,from thestandpointof
globalequilibrium,additionaldisksupplyandad-
ditional CPU supply are interchangeable;there
is ample demandto utilize either. The market
is free to chooseany balancebetweenCPU and
disk price so long asthe aggregatesupplyof ei-
thercommodityremainsfully utilized.

Fromthis basisthepriceinversionof CPUand
disk betweenthe Smale and Bank of G over-
demandsimulationsis easyto understand.Both
methodsclearthe market andcontrol excessde-
mand. Valid price solutionsarenecessaryto ac-
complishsuchcontrol, andboth techniquesfind
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Figure 16. Disk aggregate suppl y and demand
cur ves for Smale’s method, over-demand
case, iteration 2000.

suchsolutions.It is intuitively uncomfortablefor
Smale’s techniqueto arrive at higher pricesfor
moreplentiful commodities,but suchbehavior is
soundfrom aneconomicstandpoint.

Note that in every case(Figures15, 16, 17,
and 18) the respective method(eitherSmaleor
Bank of G) determinesa price that is at or very
close an approximateequilibrium price for the
economy.

As notedabove,thepricevectorsolutionspace
for two commoditiescaneffectively beviewedas
a 3 dimensionalplot of total absoluteexcessde-
mandversusthepriceof bothcommodities.Total
absoluteexcessdemandis in this casedefinedas
the sum of the absolutevalue of the excessde-
mandfor bothcommodities,andcanbeusedasa
measureof closenessto economicequilibrium.In
Figures19and 20weshow thisspaceof priceso-
lutionsfor theover-demandcase.For clarity, only
thepointof minimumexcessdemandfor eachde-
mandcurve is shown. Thesepointsform a line in
price/excessdemandspacealongwhich approxi-
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Figure 17. CPU aggregate suppl y and demand
cur ves for the Bank of G, over-demand case,
iteration 2000.

matemarket-clearingsolutionsmayfall. We also
show theprojectionof this line of equilibriaonto
the price plane,andnotethat the price solutions
indeedfall very near or upon this line of min-
ima. Also importantto noteis thattheprojection
is nearlinear with slope j fÙ� . This serves as
furtherconfirmationthatthetwo commoditiesare
almostperfectly complementary. We conclude,
basedon this further evidence,that both our im-
plementationof Smale’s method and the First
Bank of G arefunctioningcorrectlyandachiev-
ing theresultsexpectedby thegeneraltheoretical
formulationadvancedby Smaleasappliedto our
simpleGrid economy. Theresultsareparticularly
encouragingsincethey do notdependupongross
substitutabilityrestrictionsandbecausethey can
be achieved via an implementablesystemwhich
doesnot requiremarket-widepolling.

3.4 Revisiting under-demand

Having seenthatour simulatedeconomycon-
vergesto real equilibria in the overdemandcase,
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Figure 18. Disk aggregate suppl y and demand
cur ves for the Bank of G, over-demand case,
iteration 2000.

we canre-examinetheunder-demandcaseagain
usingour characterizationsof its macroeconomic
behavior. Figures21and22show theeconomic
stateof the simulationusingSmale’s method,it-
eration3119. This timesliceoccursjust after the
beginningof asimulated“day”, whenjobsarein-
jectedinto the system. The stateof the system
at this point is similar to the over-demandcase,
andthis is reflectedby thesimilarity of Figures21
and22 to Figures15 and16.

However, oncetheconsumers’jobsfor theday
becomeserviced, the systementersan under-
demandedstate. Consumersget new jobs at an
averagerateof oneevery tentime steps,andthey
typically haveplentyof $G with which to service
jobs.Producersontheotherhand,aremostlyidle.
However, sincethey basetheir supply functions
on averageprofit, they still refuseto sell until a
certainthresholdpriceis met.Thestateof thesys-
temduringiteration4000is plottedin Figures23
and24,usingthesamelinearscalefor they-axes
asin theothergraphs,andin Figures25 and26,
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Figure 19. Total absolute excess demand min-
ima, Smale’s Method, overdemand case . The
projection upon the price plane is also sho wn.
Filed cir cles represent equilibrium price solu-
tions at this iteration.

usinga morereadablelog scale.

Although it is difficult to discernfrom thefig-
ures,thereis no equilibriumpoint for both com-
moditiesin thisgraph.This is becausethesystem
at thispoint is notawell-behavedeconomy, since
the loweringof pricesdoesnot necessarilybring
aboutanincreasein demand.Putanotherway, the
demandis solow thattheassumptionthatindivid-
ual agentsdo not make a significantdifferenceis
violated. Regardless,both Smale’s methodand
the Bank of G default to a “normal” price. The
market is not cleared– there is a supply glut –
but pricesdo not becomeabnormallydepressed.
Theseresultsindicatethat both Smale’s method
and the First Bank of G will be reasonablyro-
bust with respectto degenerationin the underly-
ing economicbehavior of the systemsto which
they areapplied.

Probingfurther, the behavior of the banksin
this casecanbe accountedfor by looking at the
supplyanddemandcurves;notethatthepricethat
eachbankfinds is onewherethesupplycurve is
almostverticalandthedemandcurve horizontal,
indicatinga largejump in producerbehavior ator
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Figure 20. Total absolute excess demand min-
ima, Bank of G, overdemand case .

nearthis price. This meansthat the excessde-
mandfunction for eachcommoditywill locally
dependonly on that commodity’s price andwill
be extremelysensitive to small changesin price.
Thus the Jacobianmatrix

� � z�t|{ will have the
formÚÛÛÛÜ very large �

negativenumber
very large� negativenumber

ÝSÞÞÞß
Thelargediagonalentrieswill produceextremely
small valuesof à�t for either price-adjustment
scheme. Note in this casethat Smale’s method
reducesto tâtonnement(Cf. Section2.2.1)dueto
theoff-diagonalzeros.

It is reasonableto expect that in more realis-
tic simulationswheretruemarketbehavior holds,
and in any meaningfulimplementationof either
of theseprice adjustmentschemes,the behavior
of theagentswill besufficiently heterogeneousas
to precludethe existenceof suchlarge jumps in
cumulativesupply.

3.5 Efficiency

While commodities markets using Smale’s
methodof pricedeterminationappearto offer bet-
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Figure 21. CPU aggregate suppl y and demand
cur ves for Smale’s method, under -demand
case, iteration 3119.

ter theoreticalandsimulatedeconomicproperties
(equilibriumandpricestability) thanauctionsdo,
we also wish to considerthe effect of the two
pricing schemeson producerandconsumereffi-
ciency. To do so,we reportthe averagepercent-
ageof timeeachresourceis occupiedasautiliza-
tion metricfor suppliers,andtheaveragenumber
of jobs/minuteeachconsumerwasable to com-
pleteasa consumermetric. Table2 summarizes
thesevaluesfor boththeover- andunder-demand
cases.

In termsof efficiency, Smale’s methodis best
andtheFirst Bankof G achievesalmostthesame
results.Both aresignificantlybetterthantheauc-
tion in all metricsexcept disk utilization in the
over-demandedcase.SinceCPUsarethe scarce
resource,diskpricemayfluctuatethroughasmall
rangewithout consequencewhen lack of CPU
supplythrottlesthesystem.Theauctionseemsto
achieveslightly betterdiskutilizationunderthese
conditions.In general,however, Smale’s method
andtheFirst Bankof G approximationbothout-
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Figure 22. Disk aggregate suppl y and demand
cur ves for Smale’s method, under -demand
case, iteration 3119.

performtheauctionin thesimulatedGrid setting.

4 Conclusionsand Futur eWork

In this paper, we investigateG-commerce—
computationaleconomiesfor controllingresource
allocationComputationalGrid settings. We de-
fine hypotheticalresourceconsumers(represent-
ing usersand Grid-aware applications)and re-
sourceproducers(representingresourceowners
who “sell” their resourcesto the Grid). While
therearean infinite numberof waysto represent
individual resourcesupplyanddemandin simu-
lated setting,and noneare completelyaccurate,
we have identifieda setof traits that we believe
arerealistic.e All entitiesexceptthe market-maker act in-

dividually in their respectiveself-interests.e Producersconsiderlong-termprofit andpast
performancewhendecidingto sell.
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efficiency metric under-demand over-demand

Smaleconsumerjobs/min 0.14j/m 0.05j/m
B of G consumerjobs/min 0.13j/m 0.04j/m
auctionconsumerjobs/min 0.07j/m 0.03j/m

SmaleCPU utilization% 60.7% 98.2%
B of G CPU utilization% 60.4% 93.9%
auctionCPU utilization% 35.2% 85.5%

Smaledisk utilization% 54.7% 88.3%
B of G disk utilization% 54.3% 84.6%
auctiondisk utilization% 37.6% 85.1%

Table 2. Consumer and Producer efficiencies
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Figure 23. CPU aggregate suppl y and demand
cur ves for Smale’s method, under -demand
case, iteration 4000.ç Consumersaregivenperiodicbudgetreplen-

ishmentsandspendopportunistically.ç Consumersintroducework loadsin bulk at
thebeginningof eachsimulatedday, andran-
domly throughouttheday.

Using simulated consumersand producers
obeying these constraints,we investigate two
market strategies for setting prices: commodi-
ties markets and auctions. Commoditiesmar-
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Figure 24. Disk aggregate suppl y and demand
cur ves for Smale’s method, under -demand
case, iteration 4000.

kets are a natural choice given the fundamen-
tal tenetsof the Grid [17]. Auctions, however,
aresimpleto implementandwidely studied.We
areinterestedin which methodologyis mostap-
propriatefor Grid settings. To investigatethis
question,we examinethe overall price stability,
marketequilibrium,producerefficiency, andcon-
sumerefficiency achieved by three methodsin
simulation. The first implementsthe theoretical
work of Smale[33] which describeshow to ad-
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Figure 25. CPU aggregate suppl y and demand
cur ves for Smale’s method, under -demand
case, iteration 4000, log y axis scale .

just prices in a commoditiesmarket to achieve
equilibrium. It is viable in simulation,but im-
practicalin the “real-world” asit relieson being
ableto poll reliably producersandconsumersfor
supply and demandinformation. Often they do
not know, or will not saywhattheir responseto a
givenpricewill be.Thesecondmethod(TheFirst
Bank of G) is an implementableapproximation
to Smale’s method. It usesa large-degreepoly-
nomial to approximateexcessdemandfunctions
insteadof polling making it parameterizableby
observedmarket behavior only. Lastly, we simu-
lateauctionsin thestylethathasbeeninvestigated
previously.

Our resultsshow that Smale’s resultshold for
our simulatedGrid environment, despitebadly
behaved excessdemandfunctions, and that the
FirstBankof G achievesresultsonly slightly less
desirable. In all cases,auctionsare an inferior
choice.

As part of our future work, we plan two par-
allel thrusts.First, we areexploring thespaceof
plausibleG-commerceformulations.Our goal is
to identify andtest,in simulation,differentpossi-
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Figure 26. Disk aggregate suppl y and demand
cur ves for Smale’s method, under -demand
case, iteration 4000, log y axis scale .

ble economiesfor theGrid. Secondly, we planto
constructa working versionof the First Bank of
G. Our previouswork with theNetwork Weather
Service[38, 39] andIBP [27] leavesuswith the
infrastructurenecessaryto build alargescalesup-
ply anddemandinformationrepository. Usingthe
First Bankof G, we cangeneratepricesbasedon
“li ve” supplyanddemandinformation.
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