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Abstract

In this paper we investigateG-commece —
computationakconomiegor controlling resouce
allocationin Computationalsrid settings e de-
fine hypotheticalresouce consumes (represent-
ing uses and Grid-aware applications)and re-
souice produces (representingresouce ownes
who*“sell” their resoucesto the Grid). We then
measue the efficiencyof resouce allocation un-
dertwo differentmarket conditions:commodities
markets and auctions. We compae both mar-
ket strategiesin termsof price stability, market
equilibrium, consumerefficiency and producer
efficiency Our resultsindicatethat commodities
markets are a better choice for controlling Grid
resoucesthan previously definedauctionstrate-
gies.

1 Intr oduction

With theproliferationof the Internetcomeshe
possibilityof aggreatingvastcollectionsof com-

*This work was supportedn partby NSF grantsEIA-
9975020 EIA-9975015,andACI-9876895.

putersinto large-scalecomputationalplatforms.
A new computingparadigmknown asthe Com-
putationalGrid [17, 3] articulatesa vision of dis-
tributed computingin which applications‘plug”
into a “power grid” of computationalresources
when they execute, dynamically draving what
they needfrom the global supply While a great
dealof researctconcerningthe software mecha-
nismsthat will be necessaryo bring Computa-
tional Gridsto fruition is undervay [3, 16, 20, 8,
4,24, 21,1, 34], little work hasfocusedon the
resourcecontrol policies that are likely to suc-
ceed. In particular almostall Grid resourceal-
locationandschedulingesearctespousesne of
two paradigms:centralizedomnipotentresource
control [18, 20, 28, 29] or localizedapplication
control [9, 4, 2, 19]. Thefirst is certainlynot a
scalablesolutionandthe secondcanleadto un-
stableresourceassignmentas “Grid-aware” ap-
plicationsadaptto competefor resources.

In this paper we investigateG-commerce —
theproblemof dynamicresourcellocationonthe
Grid in termsof computationamarketeconomies
in which applicationamustbuy theresourceshey
usefrom resourcesuppliersusinganagreed-upon
currengy. Framingthe resourceallocationprob-



lem in economictermsis attractve for several
reasons.First, resourceusageis not free. While
burgeoningGrid systemsarewilling to make re-
sourcesreadily available to early developersas
away of cultivating a usercommunity resource
costeventuallymustbe consideredf the Grid is
to becomepenasive. Second,the dynamicsof
Grid performanceresponseare, as of yet, diffi-
cult to model. Application schedulersan make
resourceacquisitiondecisionsat machinespeeds
in responséo the perceved effectsof contention.
As resourcdoad fluctuates applicationscanad-
justtheirresourcausageforming afeedbackcon-
trol loop with a potentially non-linearresponse.
By formulating Grid resourceusagein market
terms,we areableto drav upona large body of
analyticalresearchfrom the field of economics
and apply it to the understandingpf emegent
Grid behaior. Last,if resourceownersareto be
convincedto federatetheir resourceso the Grid,
they mustbeableto accountfor therelative costs
andbenefitsof doingso. Any market formulation
carrieswith it aninherentnotionof relatve worth
which canbe usedto quantify the cost-to-benefit
ratio for both Grid usersandstalke-holders.

While therearea numberof differentplausible
G-commercemarket formulationsfor the Grid,
we focus on two broad cateyories: commodi-
ties markets andauctions The overall goal of
the ComputationalGrid is to allow applications
to treat computational network, and storagere-
sourcesas individual and interchangeableom-
modities, and not specific machines,networks,
anddisk or tapesystemsModelingthe Grid asa
commoditiegnarket is thusa naturalchoice. On
the otherhand,auctionsrequirelittle in the way
of global price information,andthey areeasyto
implementin a distributedsetting. Both typesof
economiehave beenstudiedasstratgjiesfor dis-
tributedresourcebrokering[11, 35, 25, 6, 7, 10].
Our goalis to enhanceour deepemunderstanding
of how theseeconomiesvill fareasresourcedro-
keringmechanism$or ComputationaGrids.

To investigateaComputationalsrid settingsand

G-commerceresourceallocation stratgies, we
evaluatecommoditiesmarkets and auctionswith
respecto four criteria:

1. Grid-wide price stability
2. Marketequilibrium

3. Applicationefficiency
4. Resourceefficiengy

Pricestability is critical to ensureschedulingsta-
bility. If the price fluctuateswildly, application
andresourceschedulerghat basetheir decisions
onthestateof theeconomywill follow suit,lead-
ing to poor performance and thereforeineffec-
tivenes®of the Grid asa computationainfrastruc-
ture. Equilibrium measureshe degreeto which
pricesare fair. If the overall market cannotbe
broughtinto equilibrium, the relative expenseor
worthof aparticulartransactiorcannotoetrusted,
andagainthe Grid is not doingits job. Applica-
tion efficiency measurehow effective the Grid
is as a computationalplatform. Resourceeffi-
cienyy measurehow well the Grid managests
resources. Poor applicationand/orresourceef-
ficiengy will meanthat the Grid is not succeed-
ing asa computationalinfrastructure. Thus, we
usethesefour criteriato evaluatehow well each
G-commerceeconomyworks asthe basisfor re-
sourceallocationin Computationalsrids.

Theremaindeof this paperis organizedasfol-
lows. In the next section,we discussthe specific
market formulationswe usein this study Sec-
tion 3 describeghe simulationmethodologywe
useandtheresultswe obtainfor differenthypo-
thetical market parameterizations.In Section4
we concludeandpointto futurework.

2 G-commerce— Mark et Economies
for the Grid

In formulating a computationaleconomyfor
the Grid, we make two assumptions#1: Therel-



ativeworth of aresouceis determinedy its sup-
ply andthedemandor it. Thisassumptions im-
portantbecauset rulesout pricing schemeshat
arebasedn arbitrarily decidedpriorities. For ex-
ample, it is not possiblein an economyfor an
organizationto simply declarewhat the price of
its resourcesare and then decreethat its users
pay that price evenif cheaperbetteralternatves
are available. While there are several plausible
scenariosn which such Draconianpolicies are
appropriate(e.g. usersare fundedto usea spe-
cific machineaspart of their individual research
projects)from the perspectie of the Grid, there-
sourceallocationproblemundertheseconditions
hasbeensolved.

Further we assumehatsupplyanddemancare
functionsof price, andthattrue relative worth is
representedttheprice-pointwheresupplyequals
demand- that is, at market equilibrium. Con-
versely at a non-equilibriumprice-point(where
supplydoesnot equaldemand)price eitherover-
statesor understateselative worth.

#2: Resouce decisionsbasedon self-inteest
areinescapablen anyfederatedresoucesystem
If we areto simulatea computationaleconomy
we must ultimately hypothesizesupply and de-
mandfunctionsfor our simulatedproducersand
consumergespectrely. Individual supply and
demandunctionsaredifficult to measuret best,
particularly since there are no existing Compu-
tational Grid economiesvhich we can obsenre.
Our admittedly less-satisdctory approachis to
definesupplyanddemandunctionsthatrepresent
eachsimulatedproducerand consumerss “self-
interest. An individual consumerbuys only if
the purchasas a “good deal” for that consumer
Analogouslyproducersellonly whenasaleis in
their bestinterest.

In the next section we detail the specificfunc-
tions we investigate but generallyour approach
relieson thesetwo assumptions.

2.1 Producersand Consumers

To comparethe efficacy of commoditiesmar
kets and auctions as Grid resourceallocation
schemes,we define a set of simulated Grid
producersand consumergepresentingesource
providersandapplicationsrespectiely. We then
usethe samesetof producersand consumergo
comparecommodity and auction-basednarket
settings.

We simulatetwo differentkinds of producers
in this study: producersof CPUs and produc-
ers of disk storage. That is, from the perspec-
tive of a resourcemarket, there are two kinds
of resourceswithin our simulatedGrids: CPUs
and disks. While the resultsshould generalize
to includea variety othercommoditiesnetworks
presenta specialproblem. Our consumemodel
is that an application may requesta specified
amountof CPU anddisk (the units of which we
discusdelow) andthattheserequestsnaybeser
viced by ary provider regardlessof location or
network connecwity. Sincenetwork links can-
not be combinedwith otherresourcesrbitrarily,
they cannotbe modeledasseparateommodities.
We believe that network costcanbe represented
in termsof “shipping” costsin morecomplicated
markets, but for the purposesof this study we
considemetwork connectity to beuniform.

2.1.1 CPU Producer Model

In this study a CPU representa computational
enginewith afixeddedicatedspeed A CPU pro-
duceragreedo sell to the Grid somenumberof
fixed “shares”of the CPU it controls. The real-
world scenaridor this modelis for CPU owners
to agreeto hosta fixednumberof processefrom
theGrid in exchangedor Grid currengy. Eachpro-
cessgetsa fixed, pre-determinedraction of the
dedicatedCPU speed,but the owner determines
how mary fractionsor “slots” heor sheis willing
to sell. For example,in our study the fractionis
10% so eachCPU produceragreedo sell a fixed



number(lessthan 10) of 10%-sizedslotsto the
Grid. Whena job occupiesa CPU, it is guaran-
teedto get 10% of the available cyclesfor each
slot it consumes.EachCPU, however, differsin
thetotal numberof slotsit is willing to sell.

To determinesupply at a given price-point,
eachCPU calculates

mean_price = revenue/now/slots (1)

whererevenue is the total amountof Grid cur
reng (hereafterreferredto as $G which is pro-
nounced‘Grid bucks”), now is anincrementing
clock, and slots is the total numberof process
slotsthe CPU owneris willing to support. The
mean_price valueis theaveragebG pertime unit
per slot the CPU has madefrom selling to the
Grid. In our study CPU producerswill only sell
if the currentprice of a CPU slot exceedsthe
mean_price value,andwhenthey sell, they sell
all unoccupiedlots. Thatis, the CPUwill sellall
of its availableslotswhenit will turnaprofit (per
slot) with respecto the averageprofit overtime.

2.1.2 Disk Producer Model

The modelwe usefor a disk produceris similar
to that for the CPU producey exceptthat disks
sell somenumberof fixed-sized“files” that ap-
plicationsmay usefor storage.The mean_price
calculationfor diskfilesis

mean_price = revenue/now/capacity (2)

wherecapacity is thetotal numberof files adisk
produceris willing to sell to the Grid. If the cur
rentpricefor afile is greatethanthemean _price,
adisk producemill sellall of its availablefiles.
Note that the resolutionof CPU slotsandfile
sizesis variable. It is possibleto make a CPU
slot equivalentto the durationof a single clock
cycle, anda disk file be a singlebyte. Sinceour
marketstransacbusinessatthe commoditylevel,
however, we hypothesizehatary realimplemen-
tationfor the Grid will needto work with larger

scaleaggreationsof resource$or reason®f effi-
cieng. Forthesimulationsdescribedn Section3
we choosevaluesfor theseaggreationsthat we
believe reflect a market formulation that is cur
rentlyimplementable.

2.1.3 Consumersand Jobs

Consumersxpresstheir needsto the market in
the form of jobs. Eachjob specifiesboth a size
and an occupang durationfor eachresourceto
be consumed.Eachconsumeimalso sportsa bud-
getof $G thatit canuseto pay for theresources
neededy its jobs. Consumersregivenaninitial
budgetanda periodicallowance but they arenot
allowedto hold $G overfrom oneperioduntil the
next. Thismethodof budgetrefreshis inspiredby
theallocationpoliciescurrentlyin useatthe NSF
Partnershipgor AdvancedComputationalnfras-
tructure(PACIs). At thesecentersallocationsare
perishable.

Whenaconsumewishesto purchaseesources
for a job, it declaresthe size of the requestfor
eachcommaodity but nottheduration.Our model
is that job durationsarerelatively long, andthat
producersallow consumersoccupang without
knowing for how long theoccupang will last. At
the time a produceragreedo sell to a consumer
a price is fixed that will be chagedto the con-
sumerfor eachsimulatedtime unit until the job
completes.

For example,considera consumerwishing to
buy a CPUslotfor 100minutesandadiskfile for
300minutesto serviceaparticularjob. If thecon-
sumerwishesto buy eachfor a particularprice, it
declaresto the market a demandof 1 CPU slot
and 1 disk slot, but doesnot reveal the 100 and
300 minutedurations. A CPU producerwishing
to sell at the CPU price agreego acceptthe job
until thejob completegasdoesthedisk producer
for thediskjob). Oncethesalesaretransactedhe
consumess budgetis decrementetly theagreed-
uponprice every simulatedminute,andeachpro-
ducers revenue accountis incrementedby the



sameamount.If thejob completesthe CPU pro-
ducerwill have accruedLO0timesthe CPU price,
thedisk producemwill have accrued300timesthe
disk price, andthe consumes budgetwill have
beendecrementedy the sum of 100 timesthe
CPUpriceand300timesthedisk price.

In definingthis methodof conductingresource
transactionsywe make severalassumptionskirst,
we assumehatin anactualGrid settingresource
produceror supplierswill commitsomefraction
of their resourceso the Grid, andthatfractionis
slowly changing. Once committed,the fraction
“belongs” to the Grid so producersare not con-
cernedwith occupang. This assumptiorcorre-
spondgo the behaior of somebatchsystemsn
which, onceajob is allowedto occuyy its proces-
sors,it is allowedto run eitheruntil completion,
or until its users allocationis exhausted Produc-
ersareconcernedin our models,with profit and
they only sellif it is profitableontheaverage By
includingtime in the supplyfunctions,producers
considerpastoccupanyg (in termsof profit) when
decidingto sell. We are alsoassuminghat nei-
ther consumersor producersare maliciousand
that both honor their commitments. In practice,
this requirementssuredlywill bedifficult to en-
force. However, if consumerandproducersnust
agreeto use secureauthenticatiormethodsand
system-prwoided librariesto gain accesgo Grid
resourcesthenit will bepossible.

2.1.4 ConsumerDemand

The consumedemandunctionis morecomple
than the CPU and disk supply functions. Con-
sumersmust purchaseenoughCPU anddisk re-
sourcedor eachjob they wishto run. If they can-
not satisfythe requestor only onetype, they do
not expressdemandor the other Thatis, thede-
mandfunctionsfor CPU and disks are strongly
correlatedalthoughthesupplyfunctionsarenot).
This relationship betweensupply and demand
functions constitutesthe most difficult of mar
ket conditions. Most theoreticalmarket systems

malke wealer assumptionsiboutthe differencein
correlation.By addressinghe moredifficult case,
we believe ourwork morecloselyresemblesvhat
canberealizedin practice.

To determinetheir demandat a given price,
eachconsumefirst calculateghe averagerateat
which it would have spent3$G for thejobsit has
runsofarif it hadbeenchagedthe currentprice.
It thencomputeshow mary $G it canspendper
simulatedtime unit until the next budgetrefresh.
Thatis, it computes

>; total_work; * price;i

avg_rate = 3)
now
remaining-budget

R = 4
capable_rate (refresh — now) (4)

where total_work; is the total amount of
work performed so far using commodity i,
price; IS the current price for commodity 7,
remaining_budget istheamounteft to spendbe-
forethebudgetrefresh,re fresh is thebudgetre-
freshtime, and now is the currenttime. When
capable_rate is greatethanor equalto avg_rate,
aconsumewill expressdemand.

Unlike our supplyfunctions,the consumede-
mandfunction doesnot considerpastprice per
formancedirectly whendeterminingdemandIn-
stead,consumeraising this function act oppor
tunistically basedon the money they have left to
spendandwhenthey will receve more.They use
pastbehaior only asanindicationof how much
work they expectto introduceandbuy whenthey
believe they canafford to sustainthis rate.

Consumersin our simulations,generatevork
asafunctionof time. We arbitrarily fix somesim-
ulatedperiodto be a “simulatedday” At thebe-
ginning of eachday, every consumeigenerates
randomnumberof jobs. By doing so, we hope
to model the diurnal userbehaior that is typi-
cal in large-scalecomputationakettings. In ad-
dition, eachconsumeicangeneratea single nev
job every time stepwith a pre-determineghroba-
bility. Consumersnaintaina queueof jobswait-
ing for servicebeforethey are acceptedoy pro-
ducers.Whencalculatingdemandthey compute



avg_rate andcapable_rate anddemandasmary
jobsfrom this queueasthey canafford.

To summarize,for our G-commercesimula-
tions:

e All entitiesexceptthe market-maler actin-
dividually in their respectie self-interests.

e Producergonsidedong-termprofit andpast
performancavhendecidingto sell.

e Consumergregivenperiodicbudgetreplen-
ishmentsaandspendopportunistically

e Consumersntroducework loadsin bulk at
thebeginningof eachsimulatedday, andran-
domly throughouthe day.

We believe that this combinationof characteris
ticscapturesareasonablsetof producemandcon-
sumertraitsin real Grid settings.

2.2 CommoditiesMark ets

In areal-world commoditiesnarket,commodi-
ties are exchangedn a centrallocation. Impor-
tant featuresof a commoditiesmarket are that
the goodsof the sametype broughtto market by
thevarioussuppliersareregardedasinterchange-
able, market price is publicly agreedupon for
eachcommodityregardedasawhole,andall buy-
ers and sellersdecidewhether(and how much)
to buy or sell at this price. Contrastthis type of
commerceavith onebasediponauctionswherein
eachbuyerandselleractsindependentlyandcon-
tractsto buy or sell at a price agreedupon pri-
vately

Sincethe goal of a computationalGrid is to
provide userswith resourcesvithoutregardto the
particularsupplier it seemssery naturalto model
a Grid economyusingcommoditiesmarkets. To
do so,werequirea pricing methodologythatpro-
ducesa systemof price adjustmentsvhich bring
about market equilibrium (i.e. equalizessupply
anddemand).

2.2.1 Pricing in Commodities Mark ets: Re-
sults of EconomicReseach

Ourmodelis anexampleof anexchange economy
namelya systeminvolving agents(producersand
consumers)ndseveralcommodities Eachagent
is assumedo controla sufficiently smallseggment
of the market. In otherwords,the individual be-
havior of any oneagentwill notaffectthesystem
asawhole appreciably In particular priceswill
be regardedas beyond the control of the agents.
Givenasystenof pricesthen,eachagentdecides
upon a courseof action, which may consistof
thesaleof somecommoditiesandthe purchasef
otherswith the proceeds.Thuswe definesupply
anddemandunctionsfor eachcommodity which
arefunctionsof the aggreatebehaior of all the
agents.Thesearedeterminedy thesetof market
pricesfor thevariouscommaodities.

Naturally, we usethe languageof vectorsfor
price, supply anddemand;eachof thesewill be
ann-vector wheren is the numberof commodi-
ties, of non-ngative real numbers.Obsene that
givena commoditybundle thatis ann — vector
of quantitiesx = 1, ..., z,, of the commodities,
and a price vector p the value of the bundleis
equalto p - x. For givenpricevectorp, definethe
excessdemandz = z(p) to be the differenceof
thedemandandsupplyvectordor thispricelevel.
Equilibrium for the economyis establishedvhen
supplyis equalto demandjn otherwords,aprice
vectorp is anequilibrium pricewhenz(p) = 0.
It shouldbe notedthat,for our purposesgurreny
will be regardedas anothercommodity Thusa
producerof a non-curreng commodity (CPU or
diskfor the purpose®f this paper)will simply be
regardedas a “consumer”of curreng; presum-
ably, the currengy will be usedin someway for
thebenefitof the producer

In generalequilibrium theory thereare three
hypothesesnadeon thefunctionz: homaeneity
continuity, andadherencéo Walras’ Law. Homo-
geneitymeanghatonly the ratiosbetweerprices
areimportantto how commoditiesaareexchanged.



Thatis, z(A\p) = z(p) for ary positive number
A. This relationshipis naturally true, sincecur-
reng is regardedasa commodity Continuity is
the propertythat excessdemandis a continuous
function of the prices, which cannothold liter-
ally in oursituation,dueto theindivisibility of the
commodities However, we assumehatthe num-
ber of agentsis large enoughthat all functions
may be approximatedy continuousunctionsof
continuousvariables.Finally, Walras’ Law states
that for ary price, z(p) - p = 0. This assump-
tion is justified asfollows: When eachagentis
supplyingthe sametotal valueasthatagentis de-
manding thevalueof thetotal supplybundles is
equalto thatof thetotal demandoundled. Thus,
asobsenedabove,p - s = p - d, andtherefore
p-z=p-(d—s) = 0. Walras’ Law will ap-
ply aslong asdemands locally non-satiatecithat
is, givenalevel of consumptionthereis alwaysa
preferencdor greaterconsumptior(price not be-
ing anobject).

When theseassumptionshave beenmet, an
equilibrium price vector hasbeenproven to ex-
ist via topologicalmethods hamelythe Brouwer
fixed-pointtheolem (see[13], Chapter5, for the
resultin its original form, or a remarkablyclear
expositionin [15], Chapter6). Thesemethods
arenon-constructie, sothatthe problemremains
to find a methodof price adjustmenthat brings
aboutequilibrium or at leastapproximatesequi-
librium within reasonabléolerances

A few words on this last point are in order
From a purely “engineering” standpoint,reach-
ing preciseeconomicequilibrium is surely im-
possible. Thus we must contentoursehes with
the more modestgoal of producinga price vec-
tor for which the excessdemandsare all close
to 0. Sincethe excessdemandfunctions can
be quite general,it is always possiblethat there
exists a price vector which producesexcessde-
mandswhich areall within a prescribedolerance
of 0 andyetis not closeto anactualequilibrium
point; further, thereis no “engineering”method
whichwill distinguishthis from a pointwhichre-

ally is very nearto an equilibrium price. Even
Scarfs algorithm,describedelov, which haser-
roneouslybeencalled a “constructie versionof
the Brouwer fixed-pointtheorent, is only guar
anteedto producepoints which are approximate
equilibria in the first sense. Thus we will use
thephraséapproximatesquilibrium” to referto a
pricewhichmalkestheexcessdlemandsill closeto
0 without judging whetherit livesneara genuine
equilibrium point. In ary event, the theoretical
existenceof an equilibrium price guaranteeshe
existenceof approximateequilibria. Moreover,
approximateequilibria are valuable: If the mar
ketis approximatelyclearedthentheeconomyis
doingagoodjob of distributing goods.

Walras in [37] suggesteda processcalled
tatonnement(“groping”) by which real-world
marketscometo equilibrium. With tatonnement
eachindividual priceis raisedor loweredaccord-
ing to whetherthatcommoditysexcessdlemands
positive or negative. Then,new excessdemands
aremeasuredandthe processs iterated. While
it wassuggesteanly asa “behavioral” explana-
tion asto how real-world marketsreachequilib-
rium, tatonnementormedthe basisfor early at-
temptsto prove the existenceof equilibrium. It is
now known thattatonnementoesnot in general
leadto a cornvergentprocess;Scarfin [30] pro-
duceda very simpleexamplefor which thereis a
uniqueequilibriumbut for which, from almostev-
ery startingpoint, the tatonnemenprocessoscil-
latesfor all time. In fact,tatonnementioesbring
aboutcorvergenceto an equilibrium price vector
underthe very stronghypothesisof grosssubsti-
tutes which statesthat increasingthe ;™ price
while holdingthe othersconstantwill bringabout
anincreasdan excessdemandn all commodities
otherthanthe j**. Unfortunatelyfor typical Grid
applications,the hypothesisof grosssubstitutes
doesnot hold, becausalifferentcommoditiesare
often complementary (For example,an applica-
tion may needboth CPU anddisk in orderto ex-
ecute. If the pricefor CPUsis too high, thenthe
applications demandfor diskswill be lower in-



steadof higher)

There are several different approachedo the
problem of finding an algorithm for adjusting
prices which will leadto equilibrium. Scarfs
algorithm (see[31]) works roughly as follows:
Supposehat therearen + 1 commodities,and
normalizethe pricesso that their sumis always
equalto 1. The set of possibleprice vectors
thusformsann-dimensionakimplexin R"*! (the
price simpl). Scarfthen divides this simplex
into a large numberof subsimplicesand shavs
thatthereexistsa subsimple any of whosepoints
provides an approximateequilibrium price. He
also provides an explicit formula for how fine
to make the subdvision in orderto producean

excessdemandwithin a pre-specifiedolerance.

Merrill [23] givesanimportantimprovementto
Scarfs algorithmwhich makesit far moreattrac-
tive from a computationastandpoint A different
sort of refinementof this ideais to be found in
Eaves’ algorithmwith “continuousrefinementof
grid size”[14].

A second approach, adwcated by Smale
in [32], is morein the spirit of multivariablecal-
culus and is more dynamicin the sensethat it
aimsto producea trajectoryfor the pricesto fol-
low. In Smales method,the pricesare normal-
ized by fixing one of the commaodities(the nu-
merire) to have price 1; in our case,this com-
modity will bethecurreng. Further supposehat
therearen othercommodities so that the setof
possiblepricesforms the positive orthantin R™.
Formthen x n matrix

20 ()

Now definethe global Newton ordinarydifferen-
tial equation

dp _
dt
where \ is a constantwhich has sign equalto

(—1)™ timesthesignof thedeterminanof D, (p).
(For contrastnotethatthetatonnemenprocesss

D,(p) —z(p) (5)

. : : . d
encapsulatedh thedlfferentlalequatlon—p = z.

Thus the global Newton may be regardedas a
moresophisticatedrersionof tatonnemenivhich
takes into accountthe interdependenciesf the
way demanddor the variouscommoditiesinter-
actwith the variousprices.) Smaleprovesthat,
underboundaryconditionswhich are justifiable
on the basisof the desirability of the commodi-
ties, almostevery maximalsolutionof the global
Newton equationstartingsufficiently nearto the
boundaryof the positive orthantof R™ (or to co)
will corvergeto the setof equilibriumprices.
Notethatexceptunderstronghypothesegnost
commonlygrosssubstitutesthe theory doesnot
guaranteehatthereis a uniqueequilibriumprice
vector However, thereis a useful result along
theselines asfollows: Definea regular equilib-
riumto beonefor whichthematrix D, (p) defined
above is nonsingular Then accordingto [22],
Theorem5.4.2,a regular equilibrium price is lo-
cally uniquein the sensdhatit is the only onein
someopensubsebf the spaceof pricevectors.

2.2.2 Price Adjustment Schemes

Herein we examinethe resultsof using several
price adjustmenschemesn simulatedcomputa-
tional market economies.Smales methodis not
possibleto usedirectly for a numberof reasons.
First, ary actualeconomyis inherentlydiscrete,
sothe partialderivativesin equation’5 do not ex-
ist, strictly speaking.Secondgiventhe behaior
of the producersaandconsumerslescribedcabore,
therearethresholdoricesfor eachagenthatbring
aboutsudderradicalchangesn behaior, sothat
areasonablenodelfor excessdemandfunctions
would involve sizeablejump discontinuities.Fi-
nally, the assumptiongn Smales modelarethat
supply and demandare functions of price only
andindependendf time,whereasn practicethere
area numberof waysfor supplyanddemando
changeovertime for agivenpricevector
Obsene thattaking A = 1 and applying the
Euler discretizationat positive integer valuesof



t reducesthis processto the Newton-Raphson
methodfor solving z(p) = 0; this obsenation
explainstheterm*“global Newton”

Implementing Smale’s method: As obsered
above, obtainingthe partial dervativesnecessary
to carryout Smales processn anactualeconomy
is impossible;however, within the framavork of
our simulatedeconomy we areableto getgood
approximationdor the partialsat a given price
vector by polling the producersand consumers.
Startingwith a price vectotr we find their pref-
erencest price vectorsobtainedby fixing all but
onepriceandvaryingtheremainingpriceslightly,
thusachiering a “secant-line”approximationfor
eachcommaodity separately;we then substitute
theseapproximationgor the valuesof the partial
derivativesin the matrix D,(p), discretizewith
respectto time, solve Equation 5 for the incre-
mentdp to getour new price vector anditerate.
We will refer, corvenientlybut somevhatinaccu-
rately, to this priceadjustmenschemesSmales
method

The First Bank of G: The drawvback to the
above schemaeis thatit relieson polling the en-
tire market for aggreatesupply anddemandre-
peatedlyto obtain the partial derivatives of the
excessdemandfunctions. If we wereto try and
implementSmales methoddirectly, eachindivid-
ual producerandconsumervould have to beable
to respondto the question“how much of com-
modity x would you buy (sell) at price vectorp?”
In practice producersandconsumersnay not be
ableto make sucha determinatioraccuratelyfor
all possiblevaluesof p. Furthermore,even if
explicit supply and demandfunctionsare made
into anobligationthatall agentamustmeetin or-
derto participatein anactualGrid economythe
methodologyclearlywill notscale.For theserea-
sons,in practice,we do not wish to assumehat
suchpolling informationwill be available.

A theoretically attractve way to circumwent
this difficulty is to approximateeachexcessde-

mandfunction z; by a polynomialin py, po, ..., p,

whichfits recentpriceandexcessdemandrectors
andto usethe partial derivativesof thesepolyno-
mialsin Equation5. In simulationsthis method
doesnot, in general,produceprices which ap-
proachequilibrium. The First Bank of G is a
price adjustmenschemewhich bothis practica-
ble and givesgoodresults;this schemenvolves
using tatonnement(see above) until prices get
“close” to equilibrium, in the sensethat excess
demandshave sufficiently small absolutevalue,
andthenusingthe polynomial methodfor “fine

tuning” Thus, the First Bank of G approxi-
matesSmales methodbut is implementablein

real-world Grid settingssinceit hypothesizesx-

cessdemandunctionsandneednot poll themar

ket for them. Our experienceis that fairly high-

degreepolynomialsarerequiredto capturesxcess
demandbehaior with the sharpdiscontinuities
describedabove. For all simulationsdescribedn

Section3, we useadegreel7 polynomial.

2.3 Auctions

Auctions have beenextensvely studiedasre-
sourceallocation strateyies for distributed com-
puting systems. In a typical auction system
(e.q.[11, 35, 25, 6]), resourceproducers(typi-
cally CPU producers)auctionthemseles using
a centralizedauctioneerand sealed-bid second-
price auctions. Thatis, consumerglaceonebid
with the auctioneerandin eachauction,the con-
sumerwith the highestbid recevesthe resource
at the price of the second-highedtidder Thisis
eguialentto “just” outbiddingthesecond-highest
bidderin an open, multi-round auction,and en-
couragesconsumergo bid what the resourcels
worth to them (see[6] for further descriptionof
auctionvariants).

When consumersimply desireone commaod-
ity, for exampleCPUsin Popcorn[25], auctions
provide a corvenient,straightforvard mechanism
for clearingthe marketplace. However, the as-
sumptionsof a Grid Computing infrastructure



posea few difficultiesto this model. First, when
anapplication(theconsumem aGrid Computing
scenario)desiresmultiple commodities,it must
placesimultaneou$idsin multiple auctionsand
may only be successfuin a few of these.To do
S0, it mustexpendcurreng onthe resourceshat
it hasobtainedwhile it waits to obtain the oth-

ers. This expenditureis wasteful,andthe uncer

tainnatureof auctionamayleadto inefficiencgy for

bothproducersaandconsumers.

Secondwhile a commoditiesmarket presents
anapplicationwith aresources worthin termsof
its price, thus allowing the applicationto make
meaningful schedulingdecisions,an auction is
more unreliablein termsof both pricing andthe
ability to obtainaresourceandmaythereforere-
sultin poorschedulingdecisionsandmoreineffi-
cieng for consumers.

To gain a better understandingof how auc-
tions fare in comparisonto commoditiesmar
kets,weimplementhefollowing simulationof an
auction-basedesourceallocationmechanisnfor
computationagrids. At eachtime step,CPUand
disk producerssubmittheir unusedCPU andfile
slotsto a CPU anda disk auctioneer Theseare
accompaniedby a minimum selling price, which
is the averageprofit per slot, asdetailedin Sec-
tion 2.1.1 abore. Consumersuse the demand
function as describedin Section2.1.3to define
their bid prices,andaslong asthey have money
to bid on a job, anda job for which to bid, they
bid oneachcommodityneededy theiroldestun-
commencegbb.

Oncetheauctioneer$iave recevedall bidsfor
atime step,they cycle throughall the commodi-
tiesin arandomorder, performingoneauctionper
commodity In eachauction,the highest-bidding
consumergets the commodity if the bid price
is greaterthanthe commoditys minimum price.
If thereis a second-higheshbidder whoseprice
is greaterthanthe commoditys minimum price,
thenthe price for the transactionis the second-
highestbidders price. If thereis no suchsecond-
highestbidder thenthe price of the commodity
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is the averageof the commoditys minimum sell-
ing price andthe consumess bid price. Whena
consumeandcommaodityhave beenmatchedthe
commodityis removed from the auctionees list
of commoditiesasis the consumess bid. At that
point,theconsumecansubmitanothebid to that
or ary otherauction,if desired.This situationoc-
curswhena consumehasobtainedall commodi-
tiesfor its oldestuncommencegbb, andhasan-
otherjob to run. Auctionsaretransactedn this
mannerfor every commodity andthe entireauc-
tion processs repeatedht every time step.

Notethatthis structuringof theauctionameans
thateachconsumemay have at mostonejob for
whichit is currentlybidding. Whenit obtainsall
the resourcedor that job, it immediatelystarts
biddingonits next job. Whenatime stepexpires
andall auctiondfor thattime stephave beencom-
pleted, there may be several consumersvhose
jobshave someresourcesllocatedandsomeun-
allocatedasaresultof failedbidding. Thesecon-
sumershave to pay for their allocatedresources
while they wait to startbidding in the next time
step.

While theauctionsdetermindransactiorprices
basedon individual bids, the supplyanddemand
functionsusedby the producersand consumers
to setask and bid price are the samefunctions
we usein the commoditiesmarket formulations.
Thus, we can comparethe market behaior and
individual producerand consumerbehaior in
bothauctionandcommoditymarket settings.

3 Simulations and Results

We comparecommoditiesmarkets and auc-
tions using the producersand consumersde-
scribedin Section 2.1 using two overall mar
ket settings. In the first, which we term under
demand producersare capable of supplying
enoughresourceto serviceall of the jobs con-
sumerscan afford. Recall that our markets do
notincluderesalecomponentsConsumersio not
make moneg. Instead,$G are givento them pe-



CPUs 100
disks 100
CPUslotsperCPU [2..10]
diskfiles perdisk [1..15]

CPUjob length

[1 .. 60] time units

diskjob length

[1 .. 60] time units

simulatedday 1440time units
allowanceperiod [1..10]days
jobssubmittedatday-break | [1 .. 100]

new job probability 10%
allowance 10° $G
Bankof G PolynomialDegree | 17

A factor .01

Table 1. Invariant simulation

parameter s for

this study

riodically muchthe in the sameway that PACls
dole out machine-timeallocations. Similarly,
producersdo not spendmonegy. Oncegathered,
it is hoardedor, for the purposesof the econ-
omy, “consumed. The underdemandcasecor-
respondgo a Grid economyin which the alloca-
tions exceedwhatis necessaryin termsof user
demand)o allocateall availableresourcesSuch
a situationoccurswhen the rate that $G are al-
locatedto consumerds greaterthan the rate at
which they introducework to the Grid. In the
over-demandcase,consumersvish to buy more
resourcehanis available.New jobsaregenerated
fast enoughto keepall producersalmostcom-
pletelybusy, therebycreatinga work back-log.

Tablel completelydescribesheinvariantsim-
ulation parametersve use for both under and
over-demandcases. For all ranges(e.g. slots
per CPU), uniform pseudo-randonmumbersare
dravn from betweenthe given extrema. For the
underdemandsimulation, we define 100 con-
sumergo usethe 100 CPUsanddisks.Eachcon-
sumersubmitsarandomnumberof jobs(between
1 and 100) at every day-break,and hasa 10%
chanceof submittinga new job every time unit.
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The over-demandsimulationspecifiess00 of the
sameconsumerswith all other parameterdeld
constant.

Usingour simulatedmarkets,we wishto inves-
tigatethreequestionsvith respecto commodities
marketsandauctions.

1. Do the theoeetical results from Smales
work [33] apply to plausible Grid simula-
tions?

2. Can we approximate Smales methodwith
onethatis practicallyimplementable?

3. Are auctions or commodities markets
a better choice for Grid computational
economies?

Question(1) is importantbecausef Smales re-
sultsapply, they dictatethatanequilibriumprice-
point mustexist (in a commoditymarket formu-
lation), andthey provide a methodologyfor find-

ing those prices that make up the price-point.
Assumingthe answerto question(1) is affirma-
tive, we alsowish to explore methodologieghat
achieve or approximatesmalesresults pbut which

are implementablen real Grid settings. Lastly,

recentwork in Grid economied1, 18, 28] and
much previous work in computationakeconomic
settings[12, 26, 5, 36] hascenteredon auctions
asthe appropriatemarket formulation. We wish

to investigatequestion(3) to determinewhether
commoditiesmarketsarea viable alternatve and
how they compardo auctionsasamarket-making
strateyy.

3.1 Mark et Conditions, under-demandcase

Figure 1 shows the CPU and disk pricesfor
Smales methodin our simulatedGrid economy
over10, 000 timeunits. Thediurnalnatureof con-
sumerjob submissionis evident from the price
fluctuations. Every 1440 “minutes” each con-
sumer generatesbetweenl and 100 new jobs
causingdemandand pricesto spike. However,
Smales methodis able to find an equilibrium
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Figure 1. Smale's prices for the under-
demand case. Solid line is CPU price, and
dotted line is disk price in $G

price for both commoditiesquickly, as is evi-

dencedin Figure 2. Notice that the excessde-

mandspikesin conjunctionwith thediurnalload,

but is quickly broughtnearzero by the pricing

showvn in Figurel whereit hoversuntil the next

cycle. Figure 3 shaws excessdemandfor disk

duringthe simulationperiod.Again,approximate
market equilibrium is quickly achieved despite
the cyclic and non-smoothaggregatesupplyand
demandunctionsimplementedoy the producers
andconsumers.

In Figure 4 we shaw the pricing determined
by our engineeringapproximationto Smales
method— theFirst Bankof G. TheFirst Bankof
G pricing closely approximateghe theoretically
achievable resultsgeneratedoy Smales method
in our simulatedenvironment. The Bank,though,
doesnot requirepolling to determinethe partial
derivativesfor the aggregatesupply anddemand
functions.Insteadjt usesaniterative polynomial
approximationthatit dervesfrom simple obser
vationsof purchasingand consumption.Thusit
is possibleto implementthe First Bank of G for
usein arealGrid settingwithoutpolling Grid pro-
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Figure 2. Smale’s CPU excess demand for the
under -demand case. The units are CPU slots.

ducersor consumergor their supplyanddemand
functionsexplicitly. Figures5 and 6 show ex-

cessdemandmeasuregieneratedoy First Bank
of G pricing over the simulatedperiod. While

theexcessdemanddgor bothcommoditiesarenot

astightly controlledaswith Smales method,the
First Bank of G keepspricesvery nearequilib-

rium.

Thepricingdeterminedy auctionss quitedif-
ferent, however, as depictedin Figures7 and 8
(we shov CPU anddisk price separatelyasthey
arealmostidenticaland obscurethe graphwhen
overlayed). In the figure, we showv the average
price paid by all consumer$or CPUduringeach
auctionround. We usethe averageprice for all
auctionsas being representatie of the “global”
market price. Eventhoughthis priceis smoothed
as an average (some consumerspay more and
somepay lessduring eachtime step), it shavs
considerablynorevariancethanpricessetby the
commoditieanarket. The spikesin workloadare
not reflectedin the price,andthe varianceseems
to increase(i.e. the price becomedessstable)
overtime.

Excesgdemandor anauctionis moredifficult
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Figure 3. Smale’s disk excess demand for the
under -demand case. The units are simulated
file units.

to measursincepricesarenegotiatedbetweerin-
dividual buyersandsellers.As anapproximation,
we considerthe sum of unsatisfiedbids and the
numberof auctionsthat did not make a saleas
a measureof market disequilibrium. Underthis
assumptionthe market is in equilibrium when
all bids are satisfied(demands satisfied)andall
auctionedgoodsare sold (supply is exhausted).
Any surplusgoodsor unsatisfiedbids are “ex-
cess. While is doesnot make senseto assigha
signto thesesurplusegsurplussupply for exam-
ple, may not be undemandedupply)in the way
thatwe canwith aggregjatesupplyanddemandn
a commoditymarket, in absolutevaluethis mea-
surecapturesdistancefrom equilibrium. Hence
wetermit absoluteexcessdlemand

In Figure9 we show this measuref excessde-
mandfor CPUsin the underdemandedauction.
Figure 10 shows the samedataas in Figure 5
from the First Bank of G, but in absolutevalue.

While the First Bank of G shavs morevariance
in absoluteexcessdemand.,it achieves approxi-
mate equilibrium and sustainsit over relatively
long periods.By contrastthe auctionsetsprices
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Figure 4. First Bank of G prices for the under -
demand case. Solid line is CPU price, and
dotted line is disk price in $G

that never satisfythe market. Strangelythe auc-
tion comesclosestto equilibrium whendemand
spikesat eachday-break.We areworking to un-

derstandhis behaior andwill reportonit aspart

of our futurework.

From thesesimulation datawe concludethat
Smales methodis appropriatéor modelinga hy-
potheticalGrid market andthatthe First Bank of
G is a reasonabldand implementable)pproxi-
mation of this method. Theseresultsare some-
what surprising given the discreteand sharply
changingsupply and demandfunctions usedby
our producersand consumers. Smales proofs
assumecontinuousfunctions and readily avail-
able partial derivatives. We also note that auc-
tioneering,while attractve from animplementa-
tion standpoint,doesnot producestablepricing
or marketequilibrium. If Grid resourceallocation
decisionsare basedon auctions,they will share
this instability andlack of fairness.A commodi-
ties market formulation, at leastin simulation,
performsbetterfromthestandpoinoftheGrid as
awhole Theseresultsagreewith thosereported
in [36] which indicatethat auctionsare locally
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Figure 5. First Bank of G CPU excess demand
for the under-demand case. The units are
CPU slots.

adwantageousbut may exhibit volatile emegent
behaior systemwide.

3.2 Mark et Conditions, over-demandcase

For the over-demandmarket case we increase
thenumberof consumerso 500leaving all other
parametergixed. As in the underdemandcase,
Smales method producesa stable price series
which the Bank of G is ableto approximatebut
which auctionsareunableto match.We omit the
bulk of the resultsin favor of examiningthe be-
havior of both Smales methodand the Bank of
G asthey corvemeto an approximateesconomic
equilibrium.

Figure 11 shaws the pricing information us-
ing Smales methodfor the over-demandmarket,
andFigurel2 shavsthepricesdeterminedy the
FirstBankof G. NotethatSmales methoddeter
minesa higherprice for disk than CPU andthat
theFirstBankof G chooses significantlyhigher
price for CPU, but a lower price for disk. Intu-
itively one expectsa higher price for CPU than
disk sinceCPU is the “rarer” commodityin our
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Figure 6. First Bank of G disk excess demand
for the under-demand case. The units are
simulated file units.

simulation. The Bank of G would seemto cor-

rectly identify CPU asthe scarcecommaodityby

settinga higherprice for it. Nonethelessexcess
demandgraphs(Figuresl3 and 14) for CPUin-

dicatethatboth solutionmethodsarecenteredn

market equilibrium. While it is difficult to read
from the graphs(we usea uniform scaleso that
all graphsof a certaintype in this study may be
compared)the meanexcessdemandor the data
showvnin Figurel3is 52.4, andthethe FirstBank
of G datain Figure 14, the meanexcessdemand
is 25.6. Both of thesevaluesare nearenoughto

zeroto constituteapproximateequilibria for our

purposes.

3.3 Multiple Equilibria

We wish to examine more closely the phe-
nomenornof apparenmmultiple economicequilib-
ria within our simulatedmarket. In particular we
claimthatboththesolutionsarrivedatby Smales
methodandby the Bank of G arevalid approxi-
mationsof economicequilibria and may in fact
be approximationf actualequilibria. To facili-
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Figure 7. Auction prices for the under-
demand case, average CPU price only, in $G

tateour examination,we will examinethe aggre-
gate supply and demandfunctionsover all pro-
ducersand consumerst particularpointsin the
simulation. To do so, we freezethe simulation
afterit hasreachedapproximatesquilibriumand
thenquerythe producersandconsumergor sup-
ply and demandvaluesover a rangeof prices.
This techniqueproducesa profile of the macroe-
conomicsupplyanddemanccurveswhich should
revealequilibriaattheir intersectiorpoints.
Recall that, in our simulatedeconomy CPU
and disk are highly complementary Since de-
mandfor one commodityis not independenbf
demandfor the other we mustgeneratdamilies
of aggre@atedemandcurwves, in which the price
of onecommodityis heldconstantvhile theprice
of the othercommodityis varied over the spec-
ified range. Eachgenerateddemandcurve in a
family is associatedvith a single fixed price for
the othercommodity Then,the fixed priceis in-
crementecandanotheraggreatesupplycurve is
generated.This processcontinuesuntil the fixed
price also reachesthe upperlimit of the speci-
fied pricerange.If generatingaggrgatedemand
curvesfor the CPU commodity for example,the
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Figure 8. Auction prices for the under-
demand case, average disk price only, in $G

simulatorproduce®necurve perpriceof thedisk
commodity

Note that, togethey thesefamilies of curves
form a three-dimensionasurfacefor eachcom-
modity in which the axes are CPU price, disk
price,anddemand.Thatis, for eachorderedpair
of CPU anddisk pricesthereis a corresponding
CPUdemandralue.Similarly, asecondsurfaceis
formedfrom the CPU price, disk price, anddisk
demanccoordinates.

In contrast,the supply of a commodityin our
economyis never correlatedwith the supply of
anothercommaodityandvariesonly with price,so
it is not necessaryo producefamilies of aggre-
gatesupply curves. Instead,we producea sin-
gle supply curve by freezingthe simulationand
varyingthepriceof acommodityoversomerange
while queryingfor aggrejatesupplyat eachnew
pricevalue.

Figures 15, 16, 17 and 18 showv aggre-
gatesupplyanddemandcurvesfor CPUanddisk
in the over-demandcase. Both Smales method
and the Bank of G are shovn. The simulation
freezesat time slice 2000 and producesaggre-
gatecurves. Ratherthanrepresentinghe three-
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Figure 9. Auction absolute excess demand for
CPU in the under -demand case. The units are
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dimensionaburfaceof pricesanddemandwhich
is difficult to representvithout the useof color),
we depictthe relationshipsn termsof a labeled
two-dimensionaprojection.

In Figure 15, the x axis represent<PU price
andthe y axis correspond¢o CPU units (either
of supplyor demand).Eachnearlyvertical curve
is a CPU demandunction relating CPU price to
CPU demandfor a givendisk price (shovn asa
label on eachcurve at the top of the graph). We
only shov CPU demandcurvesat 10 $G incre-
ments althoughoneexistsfor eachpossibleprice.
As a thick gray line, we shav the CPU demand
cunethatcorrespondso thedisk price($G211.4
in the figure) that Smales methoddeterminecat
thetime we froze the simulation. The thick dot-
ted line nearthe bottom of the graphshaows the
CPU supplycurve asa function of price. Thez
coordinateof the price point wherethe CPU de-
mandcurve (shown in thick gray) intersectsthe
CPU supply curve (dottedblack) corresponds$o
theapproximatesquilibriumpricefor CPUwithin
simulatedeconomyat the given time step. The
solid circle on the graph shows the price-point
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Figure 10. First Bank of G absolute excess
demand for CPU in the under-demand case.
The units are CPU slots.

thatSmales methoddeterminedor thesametime
step. If the circle coversthe intersection(as it
doesin Figure 15) the price adjustmentstratayy
hascorrectlydeterminedanapproximateequilib-
rium pricefor theeconomy

Similarly, in Figures16, 17, and 18 the de-
mand curves are labeledwith the fixed price of
the othercommodityusedto producethe curve:
for example,one CPU demandcurve shown cor-
respondgo holding the price of disk to $G 200
while varying the price of CPU. Sincedemand
for onetype of commaodityis tied to demandfor
theother thedemandcurve familiesfor bothdisk
andCPUtendto be similar. Only a few demand
curvesin the family are shown, but it is impor-
tantto notethat an infinity of suchcurvesexist,
forming a demandcurve surface. Also shovn
in Figures 16, 17 and 18 arethe aggreatesup-
ply curvesfor eachcommodity shavn in athick
dottedline. Supplyof bothcommoditiesemains
constantcrosshepricerangeshavn, becausall
simulatedsuppliersare“producing” at maximum
capacity No matterhow high the price may be
set,no more CPU or disk is availablewithin the
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Figure 11. Smale’s CPU and disk prices for the
over-demand case. Solid line is CPU price,
dotted line is disk price, and the units are $G.

economy
Figures 15and 16 have beenobtainedby run-
ning Smales methoduntil it reachesan approx-
imate equilibrium at a CPU price of about$G
161.8anda disk price of about$G 211.4,which
aremarkedasheary dotsontherespectregraphs.
For Figure 15, the disk priceswere then artifi-
cially fixedatvariousvaluesandtheCPUdemand
curves,labelledby disk priceacrosghetop of the

graph,weregeneratedy polling the consumers.

Again, in principlethereexist demandcurvesfor
all possibledisk prices;we have shavn only mul-
tiples of $G 10. For Figure 16, the rolesof the
commoditiesare reversed. Note that supply of
eachcommodityis afunctionof thatcommoditys
price alone,so that only one supply curve exists
on eachof thegraphs.

Figure 15 shows that the CPU market is
clearedfor a CPU price of about$G 161 (read
from thehorizontalaxis)andadisk price of about
$G 211 (readfrom the family of curves). Sim-
ilarly, one finds from the heary dot in Figure
16 that the disk market is clearedfor aboutthe
samerespectie pricesfor disk and CPU. How-
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Figure 12. First Bank of G CPU and disk prices
for the over-demand case. Solid line is CPU
price , dotted line is disk price, and the units
are $G.

ever, from the graphsit is possibleto find other
price combinationsvhich cleareachmarket sep-
arately For example,it is evident from Figure
15 thata CPU price of about$G 175 anda disk
price of $G 200 will alsoclearthe market, since
the CPU demandcurve correspondingo a disk
price of $G 200 intersectshe supply curve at a
pointwherethe CPU priceis about$G 175. Now
look at Figure 16. It seemdhata disk price of
about$G 200 and a CPU price of $G 175 will
clearthe disk market aswell! Moreover, within
the rangeof pricesshavn on the two graphs,it
looksasthoughany pricevectorwhich clearsone
market alsoclearsthe othermarket aswell, or at
leastvery nearly so. Thusit would appearthat
thereis awhole connectedcurve of market equi-
libria for our economy

Froma“behavioral” standpointthis setof rela-
tionshipsbetweersupply demandandpricemay
be explained as follows: The two commodities
areextremelycomplementarymeaningthat they
areusedtogetherratherthanin competitionwith
oneanother As long astheconsumersiave some
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Figure 13. Smale’'s CPU excess demand for
the over-demand case. The units are CPU
slots.

choiceasto which jobs to perform (asthey do
in the overdemanccase,sincejob queuesnever
clear),andaslong asthe price of onecommaodity
isloweredin conjunctionwith arisein thepriceof
theother it is alwayspossiblefor the consumers
to make purchasingdecisionswhich allow them
to spendtheir allotment, choosing,if the prices
aredifferent,to completgobswhich aremorein-
tensvein thecommoditywhichis lessexpensve.

It is interestingto notethatin this caseonecan
find the point in the theory wherethe hypothe-
seswhich rule out non-locally-uniqueequilibria
breakdown. It is apparentthat in our experi-
mentsthe two commoditiesare so complemen-
tary that the demandfunctionsshift in the same
way in responseo increases eitherprice. Thus
the columnsof the Jacobiarmatrix D, (p) of par
tial derivativesof the excessdemandwith respect
to priceare(approximately)inearly dependenat
equilibrium. By definition, then,the equilibrium
is not regular, and thereforeit neednot be lo-
cally uniqueaccordingto thetheory(Cf. Section
2.2.1).

In any event, it would seemthat theseappar
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Figure 14. First Bank of G CPU excess de-
mand for the over-demand case. The units
are CPU slots.

ent multiple equilibria arise not becauseof ary
anomaliesin our methodper se, but rather be-
causeour experimentaleconomyis so very sim-
ple asto consistof only two commodities(plus
curreng) whichareessentiallyn perfectcomple-
mentarity Onewould expectthat, asthe model
becomesnorecomple, this particularsortof dif-
ficulty will vanish. Further evenin the presence
of multiple equilibria, eachof our price adjust-
mentschemesgontinuedo behae in suchaway
asto producdong-termstability andapproximate
market-clearing. This is all that one can practi-
cally hopefor, sinceevenin well-behaed(“regu-
lar”) economiestheremay be multiple (isolated)
equilibriawith norationalbasisfor choiceamong
them.

Our implementation of Smales technique,
then,finds a valid equilibrium price from among
a spaceof possibleequilibria. The Bank of G
alsofindsavalid price solution,albeita different
onefrom Smales technique.In Figures 17 and
18, we show the supplyand demandcurve fam-
ilies aswell astheir price solutionsfor the Bank
of G. Note againthat the pricescorrespondo a
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global equilibrium; the CPU price point lies at
theintersectionof the CPU supplycurve andthe
CPU demandcurve correspondingo disk price

of $G 166. Sincethemarketis in anoverdemand

situation, resourceconsumersiave no choicein
the mix of jobs they run. Rathey they canrun
only jobs for which some supply is available.
Consumers’jobs queuewaiting to be serviced,
and this queuecontainsa mixture of CPU- and
disk-intensve jobs. Thus,from the standpoinif
globalequilibrium,additionaldisk supplyandad-
ditional CPU supply are interchangeablethere
is ample demandto utilize either The market
is free to chooseary balancebetweenCPU and
disk price so long asthe aggregjatesupply of ei-
thercommodityremainsfully utilized.

Fromthis basisthe priceinversionof CPUand
disk betweenthe Smale and Bank of G over
demandsimulationsis easyto understand.Both
methodsclearthe market and control excessde-
mand. Valid price solutionsare necessaryo ac-
complishsuchcontrol, and both techniquedind
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Figure 16. Disk aggregate suppl y and demand
curves for Smale’s method, over-demand
case, iteration 2000.

suchsolutions.lt is intuitively uncomfortabldor
Smales techniqueto arrive at higher prices for
moreplentiful commodities put suchbehaior is
soundfrom aneconomicstandpoint.

Note thatin every case(Figures15, 16, 17,
and 18) the respectre method(either Smaleor
Bank of G) determinesa price thatis at or very
close an approximateequilibrium price for the
economy

As notedabove, the pricevectorsolutionspace
for two commaoditiescaneffectively beviewedas
a 3 dimensionabplot of total absoluteexcessde-
mandversughe price of bothcommodities.Total
absoluteaxcessdemands in this casedefinedas
the sum of the absolutevalue of the excessde-
mandfor bothcommoditiesandcanbeusedasa
measuref closenes economicequilibrium. In
Figures19and 20weshow thisspaceof priceso-
lutionsfor theover-demandtase For clarity, only
thepointof minimumexcessdemandor eachde-
mandcurve is shovn. Thesepointsform aline in
price/excessdemandspacealongwhich approxi-



Price of Disk
= - =

06T
ort

~
o

09

200+

150

6291 @oud xsia

100

y —————————————— 0497

Resource Units

- -

50+

180 200 220

CPU Price

140 160

Figure 17. CPU aggregate suppl y and demand
curves for the Bank of G, over-demand case,
iteration 2000.

matemarket-clearingsolutionsmayfall. We also
shaw the projectionof this line of equilibriaonto
the price plane,and notethat the price solutions
indeedfall very nearor upon this line of min-

ima. Also importantto noteis thatthe projection
is nearlinear with slope= —1. This senesas
furtherconfirmationthatthetwo commoditiesare
almost perfectly complementary We conclude,
basedon this further evidence,that both our im-

plementationof Smales method and the First
Bank of G arefunctioningcorrectlyandachies-

ing theresultsexpectedby the generatheoretical
formulationadvancedoy Smaleasappliedto our

simpleGrid economy Theresultsareparticularly
encouragingincethey do notdependupongross
substitutabilityrestrictionsand becausdhey can
be achieved via an implementablesystemwhich

doesnotrequiremarket-widepolling.

3.4 Revisiting under-demand

Having seenthat our simulatedeconomycon-
vermgesto real equilibriain the overdemandase,
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Figure 18. Disk aggregate supply and demand
curves for the Bank of G, over-demand case,
iteration 2000.

we canre-examinethe underdemandcaseagain
usingour characterizationsf its macroeconomic
behaior. Figures21and22shavtheeconomic
stateof the simulationusing Smales method,it-
eration3119. This timesliceoccursjust afterthe
beginningof asimulated‘day”, whenjobsarein-
jectedinto the system. The stateof the system
at this point is similar to the overdemandcase,
andthisis reflectedoy thesimilarity of Figures21
and22to Figuresl5and16.

However, oncethe consumersjobsfor the day
becomeserviced, the systementersan under
demandedstate. Consumergyet new jobs at an
averagerateof oneevery tentime stepsandthey
typically have plenty of $G with which to service
jobs. Producer®ntheotherhand,aremostlyidle.
However, sincethey basetheir supply functions
on averageprofit, they still refuseto sell until a
certainthresholdoriceis met. Thestateof thesys-
temduringiteration4000is plottedin Figures23
and24, usingthe samelinear scalefor the y-axes
asin the othergraphs,andin Figures25 and 26,
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Figure 19. Total absolute excess demand min-
ima, Smale’s Method, overdemand case. The
projection upon the price plane is also shown.
Filed circles represent equilibrium price solu-
tions at this iteration.

usinga morereadabldog scale.

Althoughit is difficult to discernfrom the fig-
ures,thereis no equilibrium point for both com-
moditiesin this graph.Thisis becaus¢he system
atthis pointis notawell-behaedeconomysince
the lowering of pricesdoesnot necessarilybring
aboutanincreasen demandPutanothemway, the
demands solow thattheassumptiornhatindivid-
ual agentsdo not make a significantdifferenceis
violated. Regardlessboth Smales methodand
the Bank of G default to a “normal” price. The
market is not cleared— thereis a supply glut —

but pricesdo not becomeabnormallydepressed.

Theseresultsindicatethat both Smales method
and the First Bank of G will be reasonablyro-
bustwith respectto degeneratiorin the underly-
ing economicbehaior of the systemsto which
they areapplied.

Probingfurther, the behaior of the banksin
this casecan be accountedor by looking at the
supplyanddemandturves;notethatthepricethat
eachbankfindsis onewherethe supplycurwe is
almostverticalandthe demandcurve horizontal,
indicatingalargejump in producetbehaior ator
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Figure 20. Total absolute excess demand min-
ima, Bank of G, overdemand case.

nearthis price. This meansthat the excessde-
mand function for eachcommoditywill locally
dependonly on that commoditys price and will
be extremely sensitve to smallchangesn price.
Thus the Jacobianmatrix D,(p) will have the
form

very large 0
negative number
very large
0 negative number

Thelargediagonalentrieswill produceextremely
small valuesof Ap for either price-adjustment
scheme. Note in this casethat Smales method
reducego tatonnemenfCf. Section2.2.1)dueto
the off-diagonalzeros.

It is reasonabldo expectthatin more realis-
tic simulationswheretrue market behaior holds,
andin any meaningfulimplementationof either
of theseprice adjustmentschemesthe behaior
of theagentwill besufiiciently heterogeneouss
to precludethe existenceof suchlarge jumpsin
cumulatve supply

3.5 Efficiency

While commodities markets using Smales
methodof pricedeterminatiorappeato offer bet-
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Figure 21. CPU aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 3119.

tertheoreticalandsimulatedeconomigoroperties
(equilibriumandprice stability) thanauctionsdo,
we also wish to considerthe effect of the two
pricing schemen producerand consumereffi-
cieng. To do so, we reportthe averagepercent-
ageof time eachresourcas occupiedasautiliza-
tion metricfor suppliersandthe averagenumber
of jobs/minuteeachconsumemvas ableto com-
pleteasa consumemetric. Table2 summarizes
thesevaluesfor boththe over andunderdemand
cases.

In termsof efficiency, Smales methodis best
andtheFirst Bankof G achiezesalmostthe same
results.Both aresignificantlybetterthanthe auc-
tion in all metricsexceptdisk utilization in the
over-demandedtase. SinceCPUsarethe scarce
resourcedisk pricemayfluctuatethroughasmall
range without consequenceavhen lack of CPU
supplythrottlesthe system.The auctionseemso
achieve slightly betterdisk utilization underthese
conditions.In generalhowever, Smales method
andthe First Bank of G approximationboth out-
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Figure 22. Disk aggregate suppl y and demand
curves for Smale’s method, under-demand
case, iteration 3119.

performtheauctionin the simulatedGrid setting.

4 Conclusionsand Futur e Work

In this paper we investigateG-commerce—
computationakconomiegor controllingresource
allocation ComputationalGrid settings. We de-
fine hypotheticalresourceconsumergrepresent-
ing usersand Grid-avare applications)and re-
sourceproducers(representingesourceowners
who “sell” their resourcedo the Grid). While
therearean infinite numberof waysto represent
individual resourcesupply anddemandin simu-
lated setting,and none are completelyaccurate,
we have identified a setof traits that we believe
arerealistic.

e All entitiesexceptthe market-maler actin-
dividually in their respectie self-interests.

e Producergonsidelong-termprofit andpast
performancevhendecidingto sell.



| efficiency metric | underdemand| overdemand|

Smaleconsumerjobs/min | 0.14j/m 0.05j/m
B of G consumerjobs/min | 0.13j/m 0.04j/m
auctionconsumejobs/min | 0.07j/m 0.03j/m
SmaleCPU utilization % 60.7% 98.2%
B of G CPU utilization% | 60.4% 93.9%
auctionCPU utilization% | 35.2% 85.5%
Smaledisk utilization % 54.7% 88.3%
B of G disk utilization % 54.3% 84.6%
auctiondisk utilization% | 37.6% 85.1%

Table 2. Consumer and Producer efficiencies
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Figure 23. CPU aggregate suppl y and demand Figure 24. Disk aggregate suppl y and demand
curves for Smale’s method, under-demand curves for Smale’s method, under-demand
case, iteration 4000. case, iteration 4000.

e Consumergregivenperiodicbudgetreplen-

ishmentsandspendopportunistically kets are a natural choice given the fundamen-

tal tenetsof the Grid [17]. Auctions, however,

thebeginningof eachsimulatedday, andran-  areinterestedn which methodologyis mostap-
domly throughouthe day, propriatefor Grid settings. To investigatethis

guestion,we examinethe overall price stability,

Using simulated consumersand producers marketequilibrium,producerefficiency, andcon-
obeying these constraints, we investigate two sumer efficiengy achieved by three methodsin
market stratgies for setting prices: commodi-  simulation. The first implementsthe theoretical
ties markets and auctions. Commoditiesmar work of Smale[33] which describeshow to ad-

23
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Figure 25. CPU aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 4000, log y axis scale.

just pricesin a commoditiesmarket to achieve

equilibrium. 1t is viable in simulation, but im-

practicalin the “real-world” asit relieson being

ableto poll reliably producersandconsumergor

supply and demandinformation. Often they do

notknow, or will notsaywhattheirresponseo a

givenpricewill be. Thesecondnethod(TheFirst

Bank of G) is an implementableapproximation
to Smales method. It usesa large-degreepoly-

nomial to approximatesxcessdemandfunctions
insteadof polling making it parameterizabléy

obsered market behaior only. Lastly, we simu-
lateauctiondn thestylethathasbeeninvestigated
previously.

Our resultsshowv that Smales resultshold for
our simulatedGrid ervironment, despitebadly
behaed excessdemandfunctions, and that the
FirstBankof G achieresresultsonly slightly less
desirable. In all cases,auctionsare an inferior
choice.

As part of our future work, we plan two par
allel thrusts. First, we are exploring the spaceof
plausibleG-commercdormulations. Our goalis
to identify andtest,in simulationdifferentpossi-
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Figure 26. Disk aggregate suppl y and demand
curves for Smale’s method, under-demand
case, iteration 4000, log y axis scale.

ble economiedor the Grid. Secondlywe planto

constructa working versionof the First Bank of

G. Our previouswork with the Network Weather
Service[38, 39] andIBP [27] leavesus with the
infrastructurenecessaryo build alargescalesup-
ply anddemandnformationrepository Usingthe
FirstBankof G, we cangeneratgricesbasedn

“li ve” supplyanddemandnformation.
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